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Preface

The complexity of genome evolution poses many exciting challenges to develop-
ers of mathematical models and algorithms, who have recourse to a spectrum of
algorithmic, statistical and mathematical techniques, ranging from exact, heuris-
tic, fixed-parameter and approximation algorithms for problems based on parsi-
mony to probabilistic models, requiring Monte Carlo Markov Chain algorithms
for Bayesian analysis.

The annual RECOMB Satellite Workshop on Comparative Genomics (RE-
COMB Comparative Genomics) is a forum on all aspects and components of
this field, ranging from new quantitative discoveries about genome structure and
process to theorems on the complexity of computational problems inspired by
genome comparison. The informal Steering Committee for this meeting consists
of David Sankoff, Jens Lagergren and Aoife McLysaght.

This volume contains the papers presented at the 4th RECOMB Comparative
Genomics meeting, which was held in Montreal, Canada, on September 24- 26,
2006. The first three meetings of this series were held in Minneapolis, USA
(2003), Bertinoro, Italy (2004) and Dublin, Ireland (2005).

This year, 34 papers were submitted, of which the Program Committee se-
lected 17 for presentation at the meeting and inclusion in these proceedings. Each
submission was refereed by at least three members of the Program Committee.

RECOMB Comparative Genomics 2006 had several invited speakers, includ-
ing: Lars Feuk (The Hospital for Sick Children, Toronto), Tao Jiang (University
of California, Riverside), Fiona Brinkman (Simon Fraser University, Burnaby)
Liqing Zhang (VirginiaTech, Blacksburg) Thomas J. Hudson (McGill University,
Montreal).

In addition to the invited talks and the contributed talks, an important in-
gredient of the program was the lively poster session.

In closing, we would like to thank all the people who submitted papers and
posters and those who attended RECOMB Comparative Genomics 2006 with
enthusiasm.

September 2006 Guillaume Bourque and Nadia El-Mabrouk
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Reconstructing Domain Compositions of
Ancestral Multi-domain Proteins

Behshad Behzadi and Martin Vingron

Computational Molecular Biology Department, Max Planck Institute for Molecular
Genetics, Ihnestrasse 73, 14195 Berlin, Germany

{behshad.behzadi, martin.vingron}@molgen.mpg.de

Abstract. A model for the evolution of multidomain proteins should en-
compass not only sequence divergence but also domain duplications and
recombination of domains. Given a set of contemporary multidomain pro-
teins from different species together with a species tree, in this paper, we
suggest a model for constructing the domain compositions of ancestral
multi-domain proteins considering the above evolutionary events.

Keywords: Evolution of Multidomain proteins, Tree reconciliation.

1 Introduction

Many proteins are composed of domains in the sense that certain parts of the
protein, the domains, are similar among otherwise different proteins. Domains
are usually thought of being contiguous on the primary sequence. Sometimes one
thinks of them as forming a compact three-dimensional fold, while in other con-
text a particular primary sequence pattern is the defining feature. For the pur-
pose of this paper it suffices to agree that a domain forms a contiguous stretch on
the primary sequence and that it can be found in many different proteins. Since
a domain often also fulfills a particular biological function, domains represent a
basic structural, functional and evolutionary unit in the world of proteins [13]. Al-
though the size of domains varies widely one may assume an average size on the
order of 100 residues [8]. A majority of eukaryotic proteins are made from more
than one domain and are called multidomain proteins. Some multi-domain pro-
teins have even more than one hundred domains. It has been observed that the
proteins formed from combinations of few domain (less than 100) play a significant
role in determination of functions and phenotypes in organisms [15]. Different re-
sources for protein domain identification and the analysis of domain architectures
are available (see for example Pfam [4], CATH database [18], or SMART [12]).

We see the determination of the evolution of multidomain proteins as a chal-
lenging problem in its own right. To study the evolution of multidomain pro-
teins it is insufficient to consider only sequence divergence (micro-evolutionary
events). Rather we need to include as operations domain duplications (macro-
evolutionary events) as well as the recombination of domains. Although existing
work on the evolution of multidomain proteins makes it clear that all these
events contribute to the evolution of these proteins, no approach or model has

G. Bourque and N. El-Mabrouk (Eds.): RECOMB-CG 2006, LNBI 4205, pp. 1–10, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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been proposed which considers all the above operations. In this work, we re-
port on our work in progress about reconstructing the evolution of multidomain
proteins with a model considering the three types of events. As we will see the
concept of reconciled trees plays an important role in our approach.

The organization of the paper is as follows: In Section 2 we summarize some
existing work on the evolution of multidomain proteins. In Section 3 we formalize
the problem of reconstructing ancestral multidomain proteins. We also present a
general scheme for solving this problem considering sequence divergence, dupli-
cations and domain recombinations. Section 4 suggests a scoring measure which
we have chosen for the purpose of defining parsimonious scenarios. The last
section contains our conclusions and some directions for future work.

2 Past Work

A large amount of research work has been done on the evolution of multidomain
proteins. We categorize these efforts into two different lines of research: work on
molecular mechanisms and rates of evolutionary events of multidomain proteins,
on the one hand, and work on domain-level comparison and evolutionary mod-
els of multi-domain proteins, on the other hand. The current effort we would
categorize under the second category.

Apic et al. [1,2] have studied the combinations of domains in the three king-
doms of life (Bacteria, Archaea, and Eukaryota). In particular, they showed
that there are a large number of combinations that are shared among the three
kingdoms. They showed also that there are many combinations common among
families of the species, which are specific for a given kingdom. They conclude that
in order to create new functions, nature more frequently makes combinations of
already existing building blocks (here protein domains) than inventing new ones.

Ye and Godzik [25] have compared the domain graphs (nodes are domains
and there is an edge between two domains if and only if they co-occur in some
protein architectures) of individual organisms with each other. The goal there is
to identify the similarities and differences between their domain organizations.
They have also identified common and specific domains and combinations of
domain in each of the three kingdoms. The point to keep in mind is that different
sets of protein architectures may have the same domain graphs.

Kummerfeld et al. [10,11] have studied the role of gene fusion and fission in
the evolution of multi-domain proteins. They found that fusion occurs about
four times more often than fission. Pasek et al.[17] in separate but similar work
recently investigated the question of finding the molecular mechanisms which
causes new domain combinations. They have confirmed the major role of gene
fusion and gene fission in evolution of multidomain proteins.

Insertions and deletions of complete domains occur frequently and play an
important role in the evolution of multidomain proteins. The work of Weiner et
al. [20] on deletion of domains in the multi-domain proteins shows that deletions
occur domain-wise; in the other terms, in most of the cases some complete (and
not partial) domains are lost. In addition, they have shown that in many cases a
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deleted domain is a part of larger, deleted fragment of a protein. Aroul-Selvam et
al. [3] have observed more complicated types of insertions in which a domain (or
multiple domains) are inserted into another domain. These types of insertions
are not frequent and we do not consider them in this study.

Vogel et al. [24] have studied the relationship between the domain duplication
and recombination. They claimed that these events together are the major actors
in inventing new domain architectures. Similar studies in [22] have shown that
proteins are formed by duplication, sequence divergence and recombination of
domains. There is an evidence that certain two-domain and three-domain com-
binations recur in different protein contexts with different partner domains more
than expected. These evolutionary units which are larger than single domains
are called supra-domains (see [23]).

The order of the domains in multidomain proteins have also been considered
to be important in the formation of the proteins. Different mechanisms for the
circular permutation of the domains in a protein have been proposed, too [21].
A given pair of domains, co-occurs in a domain architecture nearly always in the
same order. So although the order of the domains can be sometimes important
for the functionality of the protein, in this paper we do not consider the order
of the domains in a protein architecture.

In the second category of the works, we mention two works which are more
related to this paper. Björklund et al. [5] have defined a novel protein simi-
larity measure, domain distance which is calculated as the number of domains
that differ between two domain architectures of two given proteins. They have
constructed an evolutionary tree using this domain distance, which has more
domain insertions and deletions than the internal repetition and exchange of
a domain. While considering a domain-level distance for building evolutionary
trees for proteins is a necessary step, it is not sufficient for building reliable evo-
lutionary scenarios. Sequence divergence of the proteins and the different kinds
of recombinations should be included in the model as well.

Przytycka et al. [19] have considered two set operations, merge and domain
deletions, as the evolutionary events of the multidomain proteins. In this ab-
straction, domain merge refers to biological mechanisms which combine two or
more domains into a new protein. Domain deletion is any process which causes a
loss of one of more domains of the protein. In their model the order of domains in
the domain architectures is neglected. Although interesting, this approach also
ignores sequence divergence and tandem duplication of domains. In the current
paper we follow [19] in using a set theoretic abstraction of domain-level events
such as merge and deletion; moreover we include the domain duplication and
the sequence divergence to the model.

3 Model

In this section we formalize the problem of reconstructing possible ancestral
sets of multi-domain proteins that may have evolved into a number of given,
contemporary multi-domain proteins. We present a general approach for solving
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this problem. For the sake of simplicity, and hopefully without loss of generality,
some concepts will be explained only using an example. One example will be
developed throughout the exposition.

Let D denote the set of all domains existing in the contemporary proteins
of our study. As stated before, we do not consider the order of the domains in
a protein; each protein architecture is represented by a multiset (a set where
elements may have repetitions) of elements of D. These multisets are denoted
by domain compositions as they reflect the domain contents of proteins without
considering their ordering. The multiset of all domain compositions of proteins
of a given species s is called the domain composition family of s. The domain
composition family of s is represented by a multiset of mulitisets of elements
in D. Note that for each contemporary protein, in addition to the architecture
(which gives us the domain composition), we have the amino-acid sequence of
the protein and its domains. The species tree which relates the species of the
study is denoted by S. The set of the leaves of the species tree which denote
the contemporary species is denoted by L(S). The problem we address in this
paper can be stated as follows: Given a species tree S, and all proteins (amino
acid sequence + domain composition) of each species in L(S), find the domain
composition family of each of the ancestral species. Figures 1 and 4 show an
input (without sequence) and output example of our problem.

Example 1. Our set of species in this example consists of four species, L(S) =
{1, 2, 3, 4}. The species tree is given in Fig. 1. Let D = {A, B, C} be the set of
all protein domains of species 1 to 4. The domain composition families of the
species denoted by R1 to R4 respectively are shown in Fig. 1.

2 3 41

12

123

1234
R1 = {{A, B}, {A, B, C}}

R2 = {{A, B}, {A, B, C}, {A, A, C}}

R3 = {{A, A, B}, {A, B}, {A, C}}

R4 = {{A, C, C}, {A, C}, {A, C}}

Fig. 1. The species trees and the domain composition families of the current species
(leaves of the tree)

Note that the internal nodes have been labeled 12, 123, and 1234 (according
to the leaves of the subtree rooted at that node). In order to be able to identify
the individual domains of our example, we relabel the domains of each species
in a given order (here left to right). For a domain X ∈ {A, B, C}, X i

j refers to
the jth occurrence of domain X , in species i. The above sets are relabeled as
follows:
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R1 = {{A1
1, B

1
1}, {A1

2, B
1
2 , C1

1}}
R2 = {{A2

1, B
2
1}, {A2

2, B
2
2 , C2

1}, {A2
3, A

2
4, C

2
2}}

R3 = {{A3
1, A

3
2, B

3
1}, {A3

3, B
3
2}, {A3

4, C
3
1}}

R4 = {{A4
1, C

4
1 , C4

2}, {A4
2, C

4
3}, {A4

3, C
4
4}}

Let us recall that gene trees, are trees which represent the evolutionary re-
lationships of a set of homologous genes. Gene trees are constructed based on
the micro-evolutionary events (sequence evolution) operations. Different meth-
ods [6,7,14] have been proposed for constructing gene trees (or more generally
phylogenetic trees). Very similar to the definition of gene trees, we define domain
trees, which are the phylogenetic trees inferred from the sequences of protein do-
mains. Obviously, the methods applied for constructing gene trees can be used
in the case of domains as well.

Similar to gene trees, the domain trees and species trees may be different in
topology because they present evolutionary relations of different entities. This
is mainly due to the macro-evolutionary events on domains like domain duplica-
tions. We use reconciled trees in the context of domain trees in order to identify
the minimum number of domain duplications which explain the difference of a
domain tree and a species tree. Using a tree reconciliation algorithm [16] and the
lca (least common ancestor) function one can localize these minimal number of
duplications on the species tree. This provides us with the number of copies of
each domain present in each of the ancestral species. Hypothetical domain trees
for the protein domains of Example 1, are given in Fig 2. The tables correspond
to the lca function of the nodes of domain trees. Recall that if the lca function
of a node and at least one of its children is the same node in species tree, this
refers to a duplication at that node.

The total number of domains in the domain compositions of the ancestral
nodes is given in Fig. 3. The domain trees together with their reconciliation
with the species tree provide valuable information about the evolution of the
multidomain proteins. Let us make this clearer in our example. We can for
example deduce that one of the domains C4

1 and C4
2 (in {A4

1, C
4
1 , C4

2}) is (most
probably) the result of a tandem duplication of the other one. However, For
A3

1 and A3
2 (in {A3

1, A
3
2, B

3
1}) the situation is different. They should be a result

of union of two parts of two ancestral proteins. The trees also show us that
{A1

1, B
1
1} and {A2

1, B
2
1} should come from an ancestral protein which contains

both A and B in its domain composition.
It should be noted that although we have used the same domain name A for

the three copies of A in node 12, these three copies can be distinguished by their
different children (one of them is the parent of A1

1 and A2
1, one other is parent of

A1
2 and A2

2 and the last one is the parent of A2
3 and A2

4). The same fact holds for
all of the ancestral domains, because the child parental relations of the domains
are provided by the reconciled trees. As a consequence, the set of all domains of
an ancestral species can be considered as a set without repetition; this will be
used in the next section.

Once the domain copy numbers of the ancestral nodes of the species trees are
known, the next step is to reconstruct the domain compositions of the proteins
of these species. In this phase, we define a measure of similarity between a
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a
b

c d e

gi

j

k

l

h

f

A1
1 A1

2A2
1 A2

2 A2
3 A2

4 A3
1A3

2A3
3 A3

4 A4
1A4

2A4
3

A1
1 A1

2 A2
1 A2

2 A2
3 A2

4 A3
1 A3

2 A3
3 A3

4 A4
1 A4

2 A4
3 a b c d e f g h i j k l

1 1 2 2 2 2 3 3 3 3 4 4 4 3 12 12 2 3 4 4 123 123 123 1234 1234

n o

p

q

m
r s t u

v

y

w

B1
1 B2

1 B3
1 B3

2 B1
2 B2

2 C1
1 C2

1 C3
1 C2

2 C4
1 C4

2 C4
3 C4

4

B1
1 B1

2 B2
1 B2

2 B3
1 B3

2 m n o p q C1
1 C2

1 C2
2 C3

1 C4
1 C4

2 C4
3 C4

3 r s t u v w y
1 1 2 2 3 3 12 3 12 123 123 1 2 2 3 4 4 4 4 12 123 4 4 4 1234 1234

Fig. 2. Domain trees and the lca function (given in tables) used for reconciling them
with the species tree given in Fig. 1. lca(x) for a node x in a domain tree is the deepest
node x′ int the species tree such that the set of leaves of subtree rooted at x is a subset
of leaves of the subtree rooted at x′. The rectangles refer to nodes that have the same
lca value as at least one of its children. These refer to the domain duplications.

parent domain composition family and the two children domain composition
families, which estimates the minimum amount of evolutionary events in terms
of set operation (domain recombinations) needed to transform the parent domain
composition family into each of the child domain composition families.

Two types of set operations are considered in this study: union of domain
compositions and deletion of domains. Note that each protein of a child can be
uniquely expressed as a union of some non-empty subsets of the parent sets. The
domain composition family reconstruction phase is explained in the next section.

But before going to the next section let us summarize our approach into the
following three phases:

1) Making domain trees: The sequence divergence (sequence evolutionary
events) are considered in this part.
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2 3 41

12

123

1234

domains of 1234: A,A,B,C,C

domains of 123: A,A,A,B,B,C,C

domains of 12: A,A,A,B,B,C,C

Fig. 3. The total number of domains in domain compositions of ancestral species; these
numbers are calculated using the reconciled trees and the domain duplication concept

2)Reconcilingdomain trees: Domain Duplications are considered in this part.
Results are used to determine the number of domain copies in the ancestral nodes.
3) Reconstructing domain composition families domain-level recombina-
tion events such as union and deletions are considered in this part.

4 Domain Composition Family Reconstruction

In this section, we formalize our scoring scheme which is used in reconstructing
domain compositions of proteins of ancestral species. Our approach is a bottom-
up reconstruction of the species domain composition families. We present a mea-
sure of similarity between the domain composition family of a parent node and
the ones of its children. Such a measure can be used to define a procedure for
reconstructing the domain composition family of a parent node when the domain
composition families of the children are given.

We present a set theory formulation of the problem. Consider we have three
species A, B and C where A is the parent of B and C. In fact B = {B1, B2, ..., Bm}
and C = {C1, C2, ..., Cn} where each Bi and Cj is a subset of {1, ..., N} for any
1 ≤ i ≤ m and 1 ≤ j ≤ n. The domain composition reconstruction family prob-
lem can be stated as follows:

Parent Domain Composition Family Reconstruction Problem

Input: Two families (B and C) of subsets of {1, ..., N} such that
(∪m

1 Bi) ∪ (∪n
1Cj) = {1, ..., N}

Output: A family {A1, ..., Ak} for some k > 0 such that
a) Ai �= φ for any 1 ≤ i ≤ k;
b) Ai ∩ Aj = φ for any 1 ≤ i < j ≤ k;
c) ∪k

1Ai = {1, ..., N} ;
d) δ({A1, ..., Ak}, {B1, ..., Bm}) + δ({A1, ..Ak}, {C1, ..., Cn}) is minimized.
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Before presenting the function δ, we need to explain how domain duplicates are
interpreted in this formalization. Note that the we are looking for a partitioning
of the elements {1, 2, ..., N} in A (i.e. no duplicates in A); the reason for this (as
explained in the last section) is that we relabel the copies of the same domain
in the ancestral node by new different labels. The domains in the children (B
and C) will also be relabeled to have the same label as their parent domain
in the parent species. For example, for the internal node 12 in our example,
N = 3 + 2 + 2 = 7. After relabeling, multiple copies of a domain with the same
label inside a single child subset (Bi and Cj) are replaced by only one copy of the
domain. In fact these duplications have been considered in the tree reconciliation
part and we should not reconsider them again.

The function δ which can be defined in different ways should reflect the cost
of transforming the protein domain composition family of a father to its chil-
dren in the species tree. Here the domain level events are considered as set
operations: union of compositions and deletion of domains. In our definition
this cost is additive on the subsets of child’s family; the cost is equal to the
sum of the costs of evolutionary events needed to generate each of the child
domain compositions. Formally, if A = {A1, ..., Ak} then δ(A, {B1, ..., Bm}) =
δ(A, {B1}) + ... + δ(A, {Bm}). Condition (d) of the output can be rewritten as
minimization of Σm

1 δ(A, {Bi})+Σn
1 δ(A, {Cj}). For each single domain composi-

tion X (X = Bi for some i ≤ m or X = Cj for some j ≤ n), we define δ(A, {X})
as follows:

δ(A, {X}) = (|{i|Ai ∩ X �= φ}| − 1)︸ ︷︷ ︸
# needed unions

.cU + (Σi:Ai∩X �=φ|Ai − X |)︸ ︷︷ ︸
# elements to be deleted

.cD (1)

The first term refers to the number of compositions in the parent family that
are being used in constructing X . The second term is the amount of domain
deletions which should be applied on the union of these compositions in order to
obtain X . The positive numbers cU and cD denote the cost of a union operation
and a domain deletion respectively.

So far, we have not found an efficient algorithm to compute this, such that
we resort to simulated annealing (SA) [9] for finding the optimal solution of
the parent domain composition family reconstruction. We start by a random
partition of {1, ..., N} and we improve the solution by swapping elements from
one subset into another or making new subsets. Although designing a better
algorithm for finding the optimal solution for large scale datasets is necessary,
we use the SA approach in order to test and confirm our model.

In Figure 4 the reconstructed domain composition families for the ancestral
nodes of the species tree of our example is given. Here both union and deletion
costs are considered to be 1.

The tree shows that some of the compositions such as {A, B, C} and {A, C}
have existed in the common ancestor of all of the species; these can be regarded
as old domain compositions. On the other hand, some other compositions like
{A, A, C} are more recent.
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{{A, B}, {A, B, C}} {{A, B}, {A, B, C}, {A, A, C}}

{{A, A, B}, {A, B}, {A, C}}

{{A, C, C}, {A, C}, {A, C}}

{{A, B}, {A, B, C}, {A, C}}

{{A, B}, {A, B, C}, {A, C}}

{{A, B, C}, {A, C}}

Fig. 4. Domain composition family reconstruction of ancestral species

One should note that our general approach in this paper is not dependent
on the choice of score. One can define another similarity score for the domain
composition families and then apply the general approach we suggested in the
last section.

5 Conclusions and Future Works

In this paper we proposed a general approach for reconstructing the ancestral
multidomain protein compositions as well as their evolution. Sequence diver-
gence, domain duplications, and the domain-level recombinations (union of com-
positions and domain deletions) are included in our model. We want to stress
the importance of using the domain trees and their reconciliation in the study
of evolution of multi-domain proteins.

This is a work in progress and we are currently working in improving algorith-
mic aspects of the family reconstruction as well as applying the model on real
biological data. Another important future direction of our work is to consider
the reliability of the edges of the domain trees, e.g. in the form of bootstrap
values, in the scenario computation.
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Domain Architecture in Homolog Identification
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Abstract. Homology identification is the first step for many genomic
studies. Current methods, based on sequence comparison, can result in
a substantial number of mis-assignments due to the alignment of ho-
mologous domains in otherwise unrelated sequences. Here we propose
methods to detect homologs through explicit comparison of domain ar-
chitecture. We developed several schemes for scoring the similarity of a
pair of protein sequences by exploiting an analogy between comparing
proteins using their domain content and comparing documents based on
their word content. We evaluate the proposed methods using a bench-
mark of fifteen sequence families of known evolutionary history. The re-
sults of these studies demonstrate the effectiveness of comparing domain
architectures using these similarity measures. We also demonstrate the
importance of both weighting critical domains and of compensating for
proteins with large numbers of domains.

1 Introduction

Homology identification arises in a broad spectrum of genomic analyses, in-
cluding annotation of new whole genome sequences, construction of compara-
tive maps, analysis of whole genome duplications and comparative approaches
to identifying regulatory motifs. Currently, sequence comparison methods are
widely used to identify homologous genes. These methods assume that sequences
with significant similarity share common ancestry, i.e. are homologs. However,
the existence of multi-domain proteins and complex evolutionary mechanisms
pose difficulties for traditional, sequence based methods. A domain inserted into
two unrelated protein sequences causes those sequences to have a region of sim-
ilarity, resulting in mis-assignment of homologs.

To address this issue, researchers frequently also require that the alignment be-
tween a pair of potential homologs extend over a large fraction of their lengths [1].
However, the accuracy of this alignment coverage heuristic is unknown and there
are many examples where alignment coverage makes an incorrect determination
of protein homology. For example, human FOXB1 and FOXP3 are known ho-
mologs with a significant BLAST [2] e-value of 10−8.95, but the alignment covers
only one fourth of the shorter protein sequence. A heuristic to determine ho-
mology based on alignment coverage would fail to recognize these proteins as
homologs. Conversely, human KIF5C and mouse BICD2, which have a region
of sequence similarity due to a shared HOOK domain, have a BLAST e-value
of 10−7.26 and an alignment coverage of more than half of the length of the
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shorter sequence. They are not in the same family, but an alignment coverage
heuristic would decide that they are. An accurate and automatic method for the
identification of homologs remains an open problem.

In this work, we investigate explicit comparison of domain architecture in
predicting homology. Complex, multidomain families, such as membrane-bound
receptors and cellular matrix adhesion proteins, are characterized by varied do-
main architectures within a single family. For example, the Kinase domain part-
ners with over 70 different domains in the eukaryotic Kinases. A given member
of the Kinase family may contain from one to a dozen domains. Typically, a pair
of Kinases has one or more shared domains, but each member of the pair also
has domains that do not appear in the other. At the same time, these protein
sequences also share domains with sequences not in the Kinase family. The chal-
lenge is to determine which aspects of domain architecture (e.g., total number
of domains in the sequence, the set of distinct domains, copy number, domain
promiscuity) are most informative for separating homologs from unrelated se-
quences that share a domain.

In order to develop measures of domain architecture similarity we exploit an
analogy between domain architecture composition and a problem in information
retrieval, namely, determining the similarity of two documents drawn from a
corpus. In this metaphor, the word content of a document is analogous to the
domain content of a protein sequence and the set of protein sequences under
study is analogous to the set of documents in the corpus.

In this work, we adapt information retrieval techniques to domain architecture
comparison as a method for identifying multi-domain homologs. We evaluate the
effectiveness of several methods on fifteen different protein families by applying
each method to test sets composed of positive examples (pairs of proteins both
in the family) and negative examples (pairs of proteins with only one member
in the protein family). We use this empirical approach to determine:

– whether domain content comparison is, in fact, an effective method for iden-
tifying homologs,

– what information about domain content is most informative for this purpose,
– what measure of domain architecture similarity is most effective in identify-

ing homologs.

1.1 Model

A domain is a sequence fragment that will fold independent of context into
a protein subunit with specific shape and function. Domains are natural evo-
lutionary units. New domain architectures arise via complex mechanisms such
as non-homologous recombination, transposable elements and retrotransposi-
tion [3,4,5,6,7,8,9,10]. About two thirds of proteins in prokaryotes and 80% of
proteins in eukaryotes are multi-domain proteins [11].

Domain databases [12, 13, 14, 15, 16, 17] store probabilistic, sequence-based
models of protein domains. These models, typically encoded as a Position Spe-
cific Scoring Matrix (PSSM) or a Hidden Markov Model (HMM), can be used
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to determine the location and type of domains in amino acids sequences. These
models can therefore be applied to new sequences about which domain informa-
tion is unknown.

Using domain databases, a protein can be represented as an unordered list
of the domains it contains. For this paper, we compare proteins based solely on
this unordered list of domains, ignoring any differences in the linker sequences
between domains. Any two instances of the same domain will have some variance
at the sequence level. To simplify the comparison, we treat every instance of a
domain as identical.

The use of domain architecture composition to define homology has not been
previously investigated. A few papers in the literature have considered measures
of domain content similarity in other contexts. CDART (Conserved Domain Ar-
chitecture Retrieval Tool) [18], a web-based resource, presents a list of sequences
with similar domain architecture to a given query sequence. Similarity is cal-
culated by counting the number of domains common to the two proteins. A
distance metric for domain architecture comparison has been considered in the
framework of evolutionary events [19], where distance is defined to be the num-
ber of domain insertions and deletions needed to transform one protein to the
other. The effectiveness of these methods in determining protein homology was
not evaluated.

Now consider again the analogy with document similarity in information re-
trieval. A simple measure of the similarity of two documents is the number of
shared words. Documents that share a significant number of words are more
likely to be on the same subject than documents that share few words. Simi-
larly, two proteins that share many domains are more likely to be homologs than
sequences with few domains in common. This is the basis of the method used in
CDART. Similarity scores based on common domains can take the number of
instances of each domain (the copy number) into account (as done by CDART)
or can ignore copy number and simply count the number of distinct types of
shared domains.

Two long documents are also more likely to share a large number of words
than two shorter documents. To correct for this effect, a length correction is used,
where length is typically measured by word count. Correcting for the domain
count is also useful in the context of comparing protein domain composition. Jac-
card similarity, which is commonly used in information retrieval, is appropriate
here. It is given by

J(p1, p2) =
n12

n1 + n2 − n12
, (1)

where n12 is the number of domains common to both sequences p1 and p2, n1
is the number of domains in p1, and n2 is the number of domains in p2. Using a
Jaccard similarity instead of an uncorrected score allows comparisons among a
set of sequences with large differences in the number of domains.

These similarity measures treat all words (or domains) equally. However, words
in a document are not equally important to determining its subject. The word
“big” conveys less information about the subject of document than the word “par-
simony,” for example. Words should be weighted based on how informative
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they are. One measure of the power of a given word to distinguish between subjects
is the inverse document frequency [20], a measure based on the observation that
a word that occurs in very few documents is more likely to differentiate between
subjects then a word that occurs in a large fraction of the documents in the cor-
pus. Similarly, some domains are more informative than others. “Promiscuous”
domains are domains that occur in many unrelated proteins [11, 21]. Intuitively,
promiscuous domains and non-promiscuous domains reveal different amounts of
evolutionary information and should be treated differently. We consider several
methods for weighting promiscuity.

Since promiscuous domains occur in many unrelated sequences, they are less
useful for determining homology than relatively rare domains. We can adapt the
inverse document frequency to obtain a weighting system to reduce the emphasis
of promiscuous domains on the score. This gives an idf weight for a domain d of

widf(d) = log2
|P|

|{p|d ∈ D(p), p ∈ P}| , (2)

where P is the set of proteins, and D(p) is the multi-set of domains in a protein
p. The denominator is the number of proteins in the dataset that contain the
domain d.

The frequency of a word in a given document is also an indication of its im-
portance to that document. The word “parsimony” is more likely to be relevant
to a document in which it appears five times than to a document in which it
occurs only once. This aspect can be expressed by the term frequency, the num-
ber of times a word appears in a document amortized by the total number of
words in that document. In multidomain sequences, term frequency is analogous
to domain copy number. We define the term frequency,

wtf(d, p) =
N(d, p)
|D(p)| , (3)

where N(d, p) is the number of occurrences of the domain d in the protein p and
|D(p)| is the number of domains in the protein p.

Typically, words are weighted using the product of wtf and widf,

wtf-idf(d, p) = wtf(d, p) × widf(d). (4)

By comparing the results from idf with tf-idf weighting, we obtain a measure
of the importance of copy number to multidomain homology detection. Note
that since wtf includes the total number of domains in protein sequence p in the
denominator, the tf-idf weight includes a correction for the number of domains
in a protein, while the idf weight does not.

We designed a third approach for weighting domains considering how mul-
tidomain protein sequences evolve. Both gene duplication and domain shuffling
are involved in the evolution of multidomain protein families. Gene duplication
results in a pair of related protein sequences sharing a domain, while domain
shuffling results in unrelated protein sequences sharing a domain. A domain
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that appears in many unrelated sequences is not a strong indicator of homology.
However, idf weighting simply measures the number of sequences in which a do-
main appears without considering whether or not those sequences are related. A
domain that appears in many sequences, but always in the same context, could
be very informative yet have a low idf weight. For example, if a domain appears
in all sequences in a large gene family that arose through repeated gene dupli-
cation and does not appear in sequences from any other family, it should be a
strong indicator of homology.

A measure of domain promiscuity that captures this idea is the number of
distinct domain partners associated with it, where two domains are partners if
they co-occur in at least one protein. For this reason, we consider weighting
a domain by the inverse of the number of distinct domain types with which
the domain occurs in sequences. We refer to this weighting method as “distinct
partner” weighting:

wdp(d) =
1

|{di|di ∈ D(p), d ∈ D(p), p ∈ P}| (5)

Note that the denominator is the number of distinct domain partners of the
domain d. This weighting was first developed for studying protein functions
in [22], but, to our knowledge, the analogous weighting method has not been
used in information retrieval.

Regardless of which weighting scheme is used (idf alone, tf-idf, or distinct part-
ner weighting), we calculated the weighted domain comparison score as follows:

S(p1, p2) =
∑

i

w(di, p1)w(di, p2), (6)

where w(di, p1) and w(di, p2) are the weights for domain di in proteins p1 and
p2. The sum runs over all domains, but w(di, p) = 0 if di does not occur in the
protein p.

Although the tf-idf and distinct partner weight can give a measure of the im-
portance of different domains, they do not include any correction for the number
of domains in a protein and they cannot be used with the Jaccard similarity,
which does not apply in the weighted case. This is addressed in information re-
trieval using the cosine similarity, which is similar to the Jaccard similarity but
can be used on either weighted or unweighted domains. For two proteins p1 and
p2, the cosine similarity is given by

C(p1, p2) =
∑

i w(di, p1)w(di, p2)√∑
i w(di, p1)2

∑
i w(di, p2)2

. (7)

Treating the protein sequences as vectors in a vector space with number of
dimensions equal to the number of domain types, cosine similarity is the cosine
of the angle between the two weight-vectors. In the case of unweighted methods
the cosine similarity reduces to n12/

√
n1n2, a variant of the Jaccard similarity.



16 N. Song, R.D. Sedgewick, and D. Durand

2 Experiments

2.1 Data

We extracted all complete mouse and human protein sequences from SwissProt
Version 44 [23], released in 09/2004 (http://us.expasy.org/sprot/), yielding
18,198 protein sequences. We focused on vertebrate data because the multi-
domain families that challenge traditional homology identification methods tend
to be larger and more complex in vertebrates.

We obtained protein domain architectures from CDART [18]. Among 18,198
sequences, 15,826 sequences have detectable domain architectures. An all-against-
all comparison of all 15,826 domain architectures yielded 2,371,608 pairs which
share at least one domain.

2.2 Family Identification

To test the various methods we required a set of pairs of proteins with known
homology. We constructed a list of sequences from fifteen known families
using reports from nomenclature committees (http://www.gene.ucl.ac.uk/
nomenclature/) and articles from the literature. Types of evidence presented
in these articles include intron/exon structure, phylogenetics and synteny. As a
result of this process, we have a list of 1,137 proteins each known to be from
one of the following families: ADAM (a family of proteins containing A Disinte-
grin And Metalloproteinase domain) [24,25,26], DVL (Dishevelled protein fam-
ily) [27,28], FOX (Forkhead transcription factor family) [29,30], GATA (GATA
binding proteins) [31,32], Kinase [33,34,35,36], Kinesin [37,38,39], KIR (Killer
cell Immunoglobulin-like Receptors) [40,41], Laminin [42,43], Myosin [44,45,46],
Notch [47,48,49], PDE (Phosphodiesterases) [50], SEMA (Semaphorin) [51,52],
TNFR (Tumor Necrosis Factor Receptors) [53, 54], TRAF (Tumor necrosis
factor Receptor Associated Factors) [55], and USP (Ubiquitin Specific Pro-
teases) [56, 57].

From this database of sequence families, we constructed a list of positive
and negative examples of homologous sequences. For each family, all pairs of
sequences with both members in the family are positive examples of homologous
pairs, and all pairs sharing at least one domain but with only one member in
the family are examples of non-homologous pairs. The number of homologous
pairs for the fifteen families studied ranged from 75 pairs in the KIR family
to 1,074,570 pairs in the Kinase family. The number of non-homologous pairs
ranged from 78 in the FOX family to 184,107 in the Kinase family.

2.3 Performance Evaluation

Our goal is to assign a similarity score to each pair such that all pairs within the
family have scores that are higher than scores between protein pairs with one
member in the family and one non-family member. We attempted this using the
number of common domains similarity score (from here on referred to as the un-
weighted score) and the weighted number of domains in common similarity score,
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trying distinct partner weighting as well as idf weighting and tf-idf weighting.
We considered each scoring system both with and without domain-count cor-
rection. To evaluate how well these methods could perform in a situation where
family identification is not known and therefore a universal cutoff must be used,
we also applied these methods to the aggregate set, in which the homologous
and non-homologous pairs from all the families are combined to a single set of
positive and negative examples.

We evaluated classifier performance using Area Under receiver operating char-
acteristic Curve (AUC) scores. AUC score provides a single measure of classi-
fication accuracy, corresponding to the fraction of correctly classified entities
given the best possible choice of threshold [58]. The range of AUC scores is from
0.0 to 1. The higher the AUC score, the better the performance. When AUC
is 1 the classifier has perfect performance and when AUC is 0.5 the classifier
cannot distinguish homologous pairs from non-homologous pairs, i.e. the score
distributions for positive and negative examples are not separable. When the
AUC score is less than 0.5 the positive and negative examples are somewhat
separable, but the classifier is separating them in the wrong direction. For this
range of AUC scores the classifier is under-performing randomly guessing if the
pair is homologous or non-homologous.

3 Results and Discussion

We tested the ability of domain content similarity to classify homologs using the
unweighted score, distinct partner weighting, idf weighting, and tf-idf weighting.
The results are shown in Table 1. For each method, results are reported both
with and without the cosine similarity for domain-count correction. For the un-
weighted scoring method, Jaccard similarity was also tested, although the results
are not reported here as they behave similarly to the cosine similarity results.
To understand the effect of domain copy number, we also tested a similarity
score based on types of domains in common that ignores domain copy number,
but results are not shown as for most families it was similar to the unweighted
method.

As the ability to separate positive and negative examples in the aggregate
dataset best mirrors the way that these comparison methods will be used in
practice, we use these results to judge the overall performance of each compari-
son method. Because of the large size of the Kinase family, the aggregate results
are dominated by the results on Kinase pairs. We therefore consider the aggre-
gate set not including the Kinase family. We see that the unweighted method
with no domain-count correction performs poorly with an AUC score of only
0.63. Methods that weighted domains to account for domain promiscuity signif-
icantly improve the performance. The aggregate AUC score increases to 0.91 or
better by using any of the weighting methods discussed here. Among the three
weighting methods considered, we obtain the best performance from distinct
partner weighting. It best reflects the evolutionary information encoded by each
domain. Cosine similarity provides a domain-count correction and boosts the
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Table 1. AUC scores for identifying homologs from different families. Results are
shown both with and without domain-count correction using cosine similarity. The last
two rows contain the AUC scores for the aggregate system containing all the families,
and the aggregate system containing all the families except for Kinase.

no weighting distinct partner idf tf-idf
cosine cosine cosine cosine

ADAM 0.94 0.96 0.98 0.98 0.97 0.98 0.84 0.88
DVL 1.00 1.00 1.00 0.99 1.00 1.00 0.99 1.00
FOX 0.50 1.00 1.00 1.00 0.00 0.99 0.99 0.99
GATA 1.00 0.99 1.00 0.94 0.63 0.87 0.83 0.87
Kinase 0.44 0.71 0.16 0.49 0.09 0.53 0.47 0.46
Kinesin 0.52 0.90 0.99 0.96 0.85 0.93 0.94 0.93
KIR 0.50 0.86 0.50 0.86 0.50 0.77 0.77 0.77
Laminin 0.99 0.97 0.99 0.95 0.97 0.90 0.96 0.97
Myosin 0.64 0.56 0.94 0.65 0.98 0.74 0.76 0.70
Notch 1.00 1.00 1.00 1.00 1.00 1.00 0.96 1.00
PDE 0.54 0.84 0.84 0.87 0.84 0.82 0.82 0.62
SEMA 0.78 0.89 0.99 1.00 0.99 0.99 0.97 0.87
TNFR 0.57 0.96 0.83 0.95 0.30 0.94 0.96 0.95
TRAF 0.85 0.98 0.99 0.99 0.99 1.00 0.99 0.99
USP 0.55 0.84 0.82 0.77 0.57 0.82 0.87 0.85
all 0.46 0.73 0.19 0.55 0.13 0.60 0.51 0.52
all (no Kinase) 0.63 0.89 0.97 0.92 0.91 0.91 0.91 0.88

performance of the unweighted similarity score to 0.89. While there is a signifi-
cant benefit to using either weighting or a domain-count correction, there is little
additional benefit to applying both. The best AUC score of 0.97 is obtained by
distinct partner weighting with no domain-count correction. For the Kinase fam-
ily, the methods based on domain weighting give similar or significantly worse
AUC scores as compared to the unweighted methods. The best AUC score for
the Kinase family is 0.71, obtained by the unweighted cosine similarity method.

When families are considered individually, the results show that for most fam-
ilies both weighting and domain-count correction are helpful, consistent with the
results observed in the aggregate dataset. However, for some families, the perfor-
mance under different comparison methods differs significantly from the trends of
the aggregate dataset. To better understand what information is most informa-
tive for domain architecture comparison and the advantages and disadvantages
of each method, we will analyze these families in details.

GATA: All methods perform well on the GATA family (AUC score greater then
0.80) except idf weighting, where an AUC score of only 0.63 is obtained. Unlike
other scoring systems presented in Table 1, idf weighting does not reflect domain
copy number in the similarity score. The poor performance of the idf weighting
combined with the good performance of the other scoring systems implies that
the domain copy number is important for GATA classification. Each member of
the family has two GATA domains, while non-homologous proteins that share a



Domain Architecture in Homolog Identification 19

domain have only one GATA domain. For similarity scores that incorporate the
domain copy number, these duplicate domains give GATA family-family pairs
improved similarity scores.

To better isolate the effect of domain copy number, we calculated the AUC
score where the similarity between two protein sequences is given by the number
of shared domain types (ignoring the duplicate copies). For most families, the
AUC score using this method was not significantly changed from the unweighted
similarity score (which included duplicate domains), but for GATA the AUC
score drops from 1.0 to 0.61. The next most significant decline in AUC score
occurred in Laminin, where the AUC score dropped from 0.99 to 0.91. For all
other protein families the decline in AUC score was less than 0.05.

TNFR: The poor performance (AUC score of 0.57) of the unweighted similarity
score in the TNFR family was improved with domain-count correction, distinct
partner weighting, or tf-idf weighting. All TNFR family members in our dataset
have at least one TNFR domain. The DEATH domain is often also present, and
the TNFR c6 domain is occasionally present, but no member of the TNFR family
has more than three domains. TNFR sequences also match unrelated sequences
with a large number of domains. Therefore any of the scoring methods that
incorporate a domain-count correction (either cosine similarity or tf-idf weighted
score) will give a larger similarity score to the homologous TNFR pairs, which
have fewer domains.

The distinct partner weighting method works relatively well, as the TNFR do-
main only has 7 distinct partners, while the DEATH domain has 14 distinct part-
ners. Moreover, the majority of the non-homologous pairs share only a DEATH
domain, while the homologous pairs all share a TNFR domain. Conversely, idf
weighting fails since the TNFR domain occurs in 47 proteins in the database,
while the DEATH domain occurs in only 36. Therefore, the DEATH domain has
a larger idf weight than the TNFR domain, so that non-homologous pairs that
share a DEATH domain have larger similarity scores than the homologous pairs
that share only a TNFR domain. This results in a AUC score of 0.3 for the idf
weighted score.

FOX: The FOX family stands out in our test set as the AUC score for idf
method is zero. This means that all non-homologous FOX pairs have a higher
score than the homologous pairs. Reason behind this is similar to the reason that
idf weighting performed poorly with the TNFR family. In our test set, all FOX
sequences except one are single domain proteins with the FH domain. The only
multi-domain FOX sequence contains a promiscuous domain, the FHA domain.
The FH domain is a strong indicator of homology and the FHA domain is not.
Although the FH domain exists in a larger number of sequences than the FHA
domain (69 vs 27), the FH domain has a smaller number of distinct partners than
the FHA domain (FH occurs only with FHA, while FHA occurs with 11 other
domains). Therefore, distinct partner gives a higher weight for the FH domain
than the FHA domain, while idf gives a higher weight for the FHA domain. Since
all homologous pairs share a FH domain and all non-homologous pairs share a
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FHA domain, the distinct partner method has a AUC score of 1.0 while the idf
weighting method has a AUC score of 0.0.

Kinase: All weighting methods fail for the Kinase family. Surprisingly, the dis-
tinct partner weighting and idf weighting score distributions are separable, but
the distributions of scores are inverted: non-homologous pairs are given larger
scores than homologous pairs. This is because the Kinase family is a large, com-
plex family. In our database, there are more than 600 Kinases. Since Kinase
proteins, which are characterized by Pkinase domain, have varied domain ar-
chitectures, the Pkinase domain has the largest number of distinct partners in
our dataset. Therefore, although Pkinase domain characterizes the Kinase fam-
ily, it was given a small score under all weighted scoring systems, and Pkinase is
treated like a promiscuous domain. This explains why the score distributions are
inverted: Kinase-Kinase pairs share a Pkinase domain which has a low weight,
while the non-homologous pairs share a non-Pkinase domain with higher weight.

Myosin: Unlike all other families in our test set domain-count correction does
not improve classification performance for the Myosin family. Domain-count cor-
rection gives higher similarity scores to domain matches in two proteins with a
small number of domains than it does to domain matches between proteins with
a larger number of domains. Therefore, when the family members have relatively
many domains but share only a few, and the outsider proteins have relatively few
domains, then domain-count correction will worsen the AUC score of a family.
This occurs in the Myosin family, causing the AUC scores for the comparison
methods with domain count correction to be lower than the uncorrected scores.

4 Conclusion

For many families domain architecture comparison is an effective method for
identifying homologs. However, these methods are challenged by large families
defined by promiscuous domains, such as the Kinase family. For most families,
two key aspects are useful for domain content comparisons: a scoring system that
corrects for the bias of proteins with a large number of domains and a measure
of the importance of the domain in determining family membership. Domain
count correction significantly improves the performance for fourteen of the fifteen
studied families. Weighting systems such as idf, tf-idf, and distinct partners are
helpful for all families in the test set other than the Kinase family. The best
performance is obtained by the distinct partner weighting system. For the Kinase
family, the weighting systems under study did not work well as they gave a low
weight to the Pkinase domain which is a major factor in determining Kinase
family membership. For a few families, such as GATA and Laminin, domain
copy number useful in determining sequence homology. Outstanding problems
that we hope to address in future work include designing a weighting method
that works well for the Kinase family as well as the other families and comparing
these domain based methods to other homology identification methods based on
sequence comparison and alignment coverage.



Domain Architecture in Homolog Identification 21

Acknowledgments

We thank S. H. Bryant, L. Y. Geer, and J. Joseph for helpful discussions. This
research was supported by NIH grant 1 K22 HG 02451-01 and a David and
Lucille Packard Foundation fellowship.

References

1. Huynen, M.A., Bork, P.: Measuring genome evolution. PNAS 95(11) (1998) 5849–
5856

2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 25(17) (1997) 3389–3402

3. Gilbert, W.: The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52
(1987) 901–905

4. Patthy, L.: Genome evolution and the evolution of exon-shuffling–a review. Gene
238(1) (1999) 103–114

5. Eichler, E.E.: Recent duplication, domain accretion and the dynamic mutation of
the human genome. Trends Genet 17(11) (2001) 661–669

6. Emanuel, B.S., Shaikh, T.H.: Segmental duplications: an ’expanding’ role in ge-
nomic instability and disease. Nat Rev Genet 2(10) (2001) 791–800

7. Kaessmann, H., Zollner, S., Nekrutenko, A., Li, W.H.: Signatures of domain shuf-
fling in the human genome. Genome Res. 12(11) (2002) 1642–1650

8. Wang, W., Zhang, J., Alvarez, C., Llopart, A., Long, M.: The origin of the jingwei
gene and the complex modular structure of its parental gene, yellow emperor, in
drosophila melanogaster. Mol Biol Evol 17(9) (2000) 1294–1301

9. Long, M.: Evolution of novel genes. Curr. Opin. Genet. Dev. 11(6) (2001) 673–680
10. Long, M., Thornton, K.: Gene duplication and evolution. Science 293(5535) (2001)

1551
11. Apic, G., Gough, J., Teichmann, S.A.: Domain coalmbinations in archaeal, eubac-

terial and eukaryotic proteomes. J Mol Biol 310(2) (2001) 311–325
12. Letunic, I., Goodstadt, L., Dickens, N.J., Doerks, T., Schultz, J., Mott, R., Ci-

ccarelli, F., Copley, R.R., Ponting, C.P., Bork, P.: Recent improvements to the
smart domain-based sequence annotation resource. Nucleic Acids Res 30(1) (2002)
242–244

13. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-
Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L.L.: The Pfam protein
families database. Nucleic Acids Res 30(1) (2002) 276–280

14. Corpet, F., Gouzy, J., Kahn, D.: The ProDom database of protein domain families.
Nucleic Acids Res 26(1) (1998) 323–326

15. Gracy, J., Argos, P.: Domo: a new database of aligned protein domains. Trends
Biochem Sci 23(12) (1998) 495–497

16. Heger, A., Holm, L.: Exhaustive enumeration of protein domain families. J Mol
Biol 328(3) (2003) 749–767

17. Murzin, A., Brenner, S., Hubbard, T., Chothia, C.: SCOP: a structural classifica-
tion of proteins database for the investigation of sequences and structures. J Mol
Biol 247(4) (1995) 536–40

18. Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H.: CDART: protein homol-
ogy by domain architecture. Genome Res. 12(10) (2002) 1619–1623



22 N. Song, R.D. Sedgewick, and D. Durand

19. Bjorklund, A.K., Ekman, D., Light, S., Frey-Skott, J., Elofsson, A.: Domain re-
arrangements in protein evolution. J Mol Biol 353(4) (2005) 911–923

20. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information Processing and Management 24(5) (1988) 513–523

21. Rubin, G.M., Yandell, M.D., Wortman, J.R., Gabor M., G.L., Nelson, C.R., Hari-
haran, I.K., Fortini, M.E., Li, P.W., Apweiler, R., Fleischmann, W.e.a.: Compar-
ative genomics of the eukaryotes. Science 287(5461) (2000) 2204–2215

22. Marcotte, E.M., Pellegrini, M., Ng, H.L., Rice, D.W., Yeates, T.O., Eisenberg, D.:
Detecting protein function and protein-protein interactions from genome sequences.
Science 285(5428) (1999) 751–753

23. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S.,
Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A.,
O’Donovan, C., Redaschi, N., Yeh, L.S.: The universal protein resource (UniProt).
Nucleic Acids Res. 33 (2005) D154–9

24. Nicholson, A.C., Malik, S.B., Logsdon, J.M.J., Van Meir, E.G.: Functional evolu-
tion of ADAMTS genes: evidence from analyses of phylogeny and gene organiza-
tion. BMC Evol Biol 5(1) (2005) 11

25. Stone, A.L., Kroeger, M., Sang, Q.X.: Structure-function analysis of the adam
family of disintegrin-like and metalloproteinase-containing proteins (review). J
Protein Chem 18(4) (1999) 447–465

26. Wolfsberg, T.G., White, J.M.: Adams in fertilization and development. Dev Biol
180(2) (1996) 389–401

27. Wharton, K.A.: Runnin’ with the Dvl: proteins that associate with Dsh/Dvl and
their significance to Wnt signal transduction. Dev Biol 253(1) (2003) 1–17

28. Sheldahl, L.C., Slusarski, D.C., Pandur, P., Miller, J.R., Khl, M., Moon, R.T.:
Dishevelled activates Ca2+ flux, PKC, and CamKII in vertebrate embryos. J Cell
Biol 161(4) (2003) 769–77

29. Mazet, F., Yu, J.K., Liberles, D.A., Holland, L.Z., Shimeld, S.M.: Phylogenetic
relationships of the fox (forkhead) gene family in the bilateria. Gene 316(Oct 16)
(2003) 79–89

30. Kaestner, K.H., Knochel, W., Martinez, D.E.: Unified nomenclature for the winged
helix/forkhead transcription factors. Genes Dev. 14(2) (2000) 142–146

31. Lowry, J.A., Atchley, W.R.: Molecular evolution of the GATA family of tran-
scription factors: conservation within the DNA-binding domain. J Mol Evol 50(2)
(2000) 103–115

32. Patient, R.K., McGhee, J.D.: The GATA family (vertebrates and invertebrates).
Curr Opin Genet Dev 12(4) (2002) 416–22

33. Robinson, D.R., Wu, Y.M., Lin, S.F.: The protein tyrosine kinase family of the
human genome. Oncogene 19(49) (2000) 5548–5557

34. Hanks, S.K.: Genomic analysis of the eukaryotic protein kinase superfamily: a
perspective. Genome Biol 4(5) (2003) 111

35. Cheek, S., Zhang, H., Grishin, N.V.: Sequence and structure classification of ki-
nases. J Mol Biol 320(4) (2002) 855–881

36. Shiu, S.H., Li, W.H.: Origins, lineage-specific expansions, and multiple losses of
tyrosine kinases in eukaryotes. Mol Biol Evol 21(5) (2004) 828–840

37. Iwabe, N., Miyata, T.: Kinesin-related genes from diplomonad, sponge, amphioxus,
and cyclostomes: divergence pattern of kinesin family and evolution of giardial
membrane-bounded organella. Mol Biol Evol 19(9) (2002) 1524–1533

38. Lawrence, C.J., Dawe, R.K., Christie, K.R., Cleveland, D.W., Dawson, S.C., En-
dow, S.A., Goldstein, L.S., Goodson, H.V., Hirokawa, N., Howard, J., et. al.: A
standardized kinesin nomenclature. J Cell Biol 67(1) (2004) 19–22



Domain Architecture in Homolog Identification 23

39. Miki, H., Setou, M., Hirokawa, N.: Kinesin superfamily proteins (kifs) in the mouse
transcriptome. Genome Res 13(6B) (2003) 1455–1465

40. Welch, A.Y., Kasahara, M., Spain, L.M.: Identification of the mouse killer
immunoglobulin-like receptor-like (Kirl) gene family mapping to chromosome X.
Immunogenetics 54(11) (2003) 782–790

41. Belkin, D., Torkar, M., Chang, C., Barten, R., Tolaini, M., Haude, A., Allen, R.,
Wilson, M.J., Kioussis, D., Trowsdale, J.: Killer cell Ig-like receptor and leukocyte
Ig-like receptor transgenic mice exhibit tissue- and cell-specific transgene expres-
sion. J Immunol 171(6) (2003) 3056–63

42. Engel, J.: Laminins and other strange proteins. Biochemistry 31(44) (1992) 10643–
10651

43. Hutter, H., Vogel, B.E., Plenefisch, J.D., Norris, C.R., Proenca, R.B., Spieth, J.,
Guo, C., Mastwal, S., Zhu, X., Scheel, J., Hedgecock, E.M.: Conservation and
novelty in the evolution of cell adhesion and extracellular matrix genes. Science
287(5455) (2000) 989–994

44. Richards, T.A., Cavalier-Smith, T.: Myosin domain evolution and the primary
divergence of eukaryotes. Nature 436(7054) (2005) 1113–1118

45. Goodson, H.V., Dawson, S.C.: Multiplying myosins. Proc Natl Acad Sci U S A
103(10) (2006) 3498–3499 Comment.

46. Foth, B.J., Goedecke, M.C., Soldati, D.: New insights into myosin evolution and
classification. Proc Natl Acad Sci U S A 103(10) (2006) 3681–3686

47. Maine, E.M., Lissemore, J.L., Starmer, W.T.: A phylogenetic analysis of vertebrate
and invertebrate notch-related genes. Mol Phylogenet Evol 4(2) (1995) 139–149

48. Westin, J., Lardelli, M.: Three novel notch genes in zebrafish: implications for
vertebrate notch gene evolution and function. Dev Genes Evol 207(1) (1997) 51–
63

49. Kortschak, R.D., Tamme, R., Lardelli, M.: Evolutionary analysis of vertebrate
notch genes. Dev Genes Evol 211(7) (2001) 350–354

50. Degerman, E., Belfrage, P., Manganiello, V.: Structure, localization, and regulation
of cGMP-inhibited phosphodiesterase (PDE3). J Biol Chem 272(11) (1997) 6823–6

51. Raper, J.: Semaphorins and their receptors in vertebrates and invertebrates. Curr
Opin Neurobiol 10(1) (2000) 88–94

52. Yazdani, U., Terman, J.R.: The semaphorins. Genome Biol 7(3) (2006) 211
53. Locksley, R.M., Killeen, N., Lenardo, M.J.: The tnf and tnf receptor superfamilies:

integrating mammalian biology. Cell 104(4) (2001) 487–501
54. MacEwan, D.J.: TNF ligands and receptors–a matter of life and death. Br. J.

Pharmacol. 135(4) (2002) 855–875
55. Inoue, J., Ishida, T., Tsukamoto, N., Kobayashi, N., Naito, A., Azuma, S., Ya-

mamoto, T.: Tumor necrosis factor receptor-associated factor (TRAF) family:
adapter proteins that mediate cytokine signaling. Exp. Cell Res. 254(1) (2000)
14–24

56. Wing, S.S.: Deubiquitinating enzymes–the importance of driving in reverse along
the ubiquitin-proteasome pathway. Int J Biochem Cell Biol 35(5) (2003) 590–605

57. Kim, J.H., Park, K.C., Chung, S.S., Bang, O., Chung, C.H.: Deubiquitinating
enzymes as cellular regulators. J Biochem (Tokyo) 134(1) (2003) 9–18

58. DeLong, E.R., DeLong, D.M.: Comparing the areas under two or more correlated
receiver operating characteristic curves: a nonparametric approach. Biometrics 44
(1988) 837–845



Inferring Positional Homologs with Common
Intervals of Sequences�

Guillaume Blin1, Annie Chateau2,3, Cedric Chauve2,3,4, and Yannick Gingras3

1 IGM-LabInfo - UMR CNRS 8049, Université Marne-la-Vallée
5 bd. Descartes 77454 Marne-la-Vallée Cedex 2, France

gblin@univ-mlv.fr
2 LaCIM, Université du Québec À Montréal

CP 8888, Succ. Centre-Ville, H3C 3P8, Montréal (QC), Canada
{chateau, chauve}@lacim.uqam.ca

3 CGL, Université du Québec À Montréal
ygingras@ygingras.net

4 Department of Mathematics, Simon Fraser University
8888 University Drive, V5A 1S6, Burnaby (BC), Canada

Abstract. Inferring orthologous and paralogous genes is an important
problem in whole genomes comparisons, both for functional or evolu-
tionary studies. In this paper, we introduce a new approach for inferring
candidate pairs of orthologous genes between genomes, also called po-
sitional homologs, based on the conservation of the genomic context.
We consider genomes represented by their gene order – i.e. sequences
of signed integers – and common intervals of these sequences as the an-
chors of the final gene matching. We show that the natural combinatorial
problem of computing a maximal cover of the two genomes using the min-
imum number of common intervals is NP-complete and we give a simple
heuristic for this problem. We illustrate the effectiveness of this first ap-
proach using common intervals of sequences on two datasets, respectively
8 γ-proteobacterial genomes and the human and mouse whole genomes.

1 Introduction

In the comparison of two genomes, a first natural task is to compare the sequences
of their genes (nucleotides or amino-acids) in order to identify homologous genes,
that are pairs of genes whose sequence similarity is strong enough to suggest
a common ancestral gene. However, due to the evolutionary mechanisms that
shape genomes – rearrangements, duplications, both of genomic segments or of
whole genomes, gene losses or lateral transfers – homologous relations are often
ambiguous and do not induce clear one-to-one relationships between genes of the
two genomes [8]. Instead, non-trivial gene families, occurring in several positions
in one or both genomes, make difficult to distinguish pairs of orthologous genes.
Several methods have been proposed that use the genomic context to distinguish
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pairs of genes, called positional homologs, that are good candidates to be pairs
of orthologous genes [8]. In this paper we describe a new approach using the
genomic context, based on the notion of common intervals of two sequences.

There are two main approaches for inferring positional homologs using the
genomic context. In the exemplar approach, introduced by Sankoff [21], for every
non-trivial gene family, all but one copy in each genome are deleted. The pair of
genes that is conserved for each family is called a pair of ancestral homologs. The
gene matching approach is more general as it allows to conserve more than one
copy of a gene family and seeks for an unambiguous one-to-one matching between
these copies [12]. Both approaches have in common that they lead to represent
the two compared genomes by two permutations. These permutations can then
be used in several contexts: computing a genomic distance [23], phylogenetic
reconstruction [5] or proposing candidate pairs of orthologous genes [12,14].

In both families of methods – exemplar and gene matching –, several com-
binatorial criteria have been considered in order to clear ambiguous homology
relations between genes of the same family. A classical approach is to try to find
the resulting pair of permutations that will minimize a given genomic distance
between them, like the reversal distance [12,21,23,24] or the reversal and translo-
cation distance [14]. Another approach looks for the pair of permutations that
maximizes the conservation of some combinatorial structures in the two result-
ing permutations, like adjacencies [5] or common intervals of permutations [6].
However, it is important to note that, up to date, all these problems have been
shown to be NP-hard [3,7,11]

In the present work, we are interested in computing a gene matching with
a method that is inspired by algorithms for global alignment of long genomic
sequences. Indeed, given two genomes represented by two sequences of integers –
where each integer labels a gene family – a gene matching is nothing else than a
global alignment of these two sequences. Here we propose to use the occurrences
of common intervals of these two sequences, which are segments having the
same gene content with no constraint on gene order or multiplicity, as anchors
for the final gene matching. Then we recursively match common intervals, using
a simple heuristic for the Minimum Inextensible Box Covering problem –
which is a NP-hard problem (see Appendix) – until all possible pairs of positional
homologs have been chosen. Hence, one of the originality of our method is that
it does not try to compute the pair of permutations that is optimal for a given
combinatorial criterion, but rely on a greedy approach of recursively matching
genomic segments having a common combinatorial structure.

Our method can be seen as an extension of a previous gene matching al-
gorithm, that iteratively matches longest common substrings (LCS) of the two
genomes – such LCS representing perfect colinear segments of genes – [23,5], but
using a less constrained notion of conserved structure between genomes (common
intervals vs. LCS). Common intervals of sequences are interesting with respect to
LCS for two reasons. From the biological point of view, they are more adapted to
detect sequences of genes that evolved from a common ancestral sequence with
events like segmental or tandem duplications, or local rearrangements. From the
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algorithmical point of view, the set of all common intervals of two sequences
can be computed in quadratic time [22]. Note however that gene deletions or
insertions, that are natural evolutionary events, can destroy common intervals,
and we discuss this issue in Section 4.

In Section 2, we describe precisely our method to compute a gene matching.
In Section 3, we present two experimental studies of our method. We first con-
sider 8 genomes of γ-proteobacteria, and we compare the results of our method
with the LCS method of [5]; this experiment raises interesting facts about the
properties of these two notions of conserved structures in the comparison of more
than two genomes. Next, we consider the human and mouse genomes and we
compare our results with the results obtained with the MSOAR method that
tries to find the most parsimonious pairs of permutations for the reversals and
translocations distance [14]. In Section 4, we describe several ways to improve
our initial approach.

2 The New Method

A matching between two sequences of integers s1 and s2, where each of these
integers represents a family of genetic markers – genes here –, is a one-to-one
mapping between a subset of the first sequence and a subset of the second se-
quence, such that pairs of mapped markers belong to the same family [5]. In
the method we propose, we compute a matching in four main steps. First, we
define candidate anchors for the alignment between the genomes using common
intervals of sequences. We briefly recall in the next paragraph some definitions
and properties of common intervals of sequences. Then, we exclude anchors that
do not exhibit enough structure to produce an accurate matching, using some
reasonable selection criteria. Finally we extract from the remaining anchors a
consistent subset, and apply the method recursively in each anchor, until we
are left only with anchors containing markers of a single family, then we match
markers in these boxes. The final result is a matching between the two consid-
ered sequences that describe one-to-one correspondences between the genes of
the two corresponding genomes.

2.1 First Step: Finding the Anchors

Given a sequence of integers A representing a genome, the alphabet Σ of its
gene content, and a subset S of Σ, we define a location of S in A as a substring
of A that is a word on S. Hence, from a genomic point of view, a location of
S in A represents a contiguous region in A with gene content exactly S. The
location is maximal if this substring cannot be extended on the right or on the
left, meaning that the contiguous characters are not in S. A factor between two
genomes is a subset of Σ which has at least one location in each genome. Note
that, for a given factor, there can be several locations in the same genome.

In the following, a box will refer to a set of two maximal locations, one in each
genome, for a factor S, that is called the alphabet of the box1. A box is said to
1 Box are called common intervals in [22].
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be trivial if its alphabet has cardinality 1. We represent a box by the quadruplet
of the coordinates of the two corresponding locations.
Example: S = {7, 8, 9, 10, 11} is a factor between A and B, with one location in
A and two in B, which gives two boxes for S, (5, 10, 4, 8) and (5, 10, 12, 16).

Genome A: 1 2 3 12 11 8 7 9 9 10 4 3 1 1 5
Genome B: 6 1 4 8 9 10 11 7 2 13 13 7 8 9 10 11

The first step of our method consists in the computation of all the boxes
between the two considered genomes, that we use as the basic structures to
define the final matching. To compute the set of all possible boxes, we use the
quadratic-time algorithm of Schmidt and Stoye [22].

2.2 Second Step: Filtering the Set of Boxes

Our experiments with the LCS method showed that a significant number of
false positives matched gene pairs (roughly speaking, pairs of matched genes that
contain two different genes according to gene names in the Uniprot database, see
Section 3 for more details) was removed when LCS of short length were discarded
from the analysis. This suggests that subsequences of the two genomes that do
not exhibit a strong common combinatorial structure (here measured in terms
of the length of the LCS) are more likely to produce wrong pairs of matched
genes.

This is why we decided to introduce a similar feature in our method, that
discards putative anchors, here boxes, that do not exhibit enough combinatorial
structure. For LCS, the natural parameter that defines such a structure is the
length, due to the conservation of the order in a LCS. However this is not the
case with boxes, due to the less constrained structure that defines them, an issue
that we discuss in Section 4.

In this first investigation of using common intervals of sequences that we
present in this work, we chose to use a simple geometrical criterion to exclude
boxes, that is the length of the smaller location for a given box, called the
minimum side of the box. The intuition for this choice is that this parameter
extends naturally the criterion of length that we used with the LCS method. This
filtering step, with the simple criterion we consider, can be done in linear-time
in the number of boxes.

We show in Section 3 some experiments using a dataset of 8 bacterial genomes
that illustrate the impact of this filtering step on the resulting matchings.

2.3 Third Step: Extracting a Consistent Subset of Candidate Boxes

The third step of the method we propose consists in the computation of the gene
matching by a recursive process, that takes as inputs the boxes that were not
discarded during the second step.

Before describing this process, we define some combinatorial notions about
sets of boxes:
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– Intuitively, a box (x1, x2, y1, y2) defines a rectangle in the 2D plane, defined
by the points (x1, y1), (x1, y2), (x2, y1), (x2, y2).

– Two boxes are said to be compatible if there exists no vertical or horizontal
line that can cross both boxes at once. Formally, B = (x1, x2, y1, y2) and
B′ = (x′

1, x
′
2, y

′
1, y

′
2) are compatible if [x1, x2]

⋂
[x′

1, x
′
2] = ∅ and [y1, y2]

⋂
[y′

1, y
′
2] = ∅.

– A box B id said to be enclosed in a box B′ if the rectangle B is completely
included in the rectangle B′. Formally, B = (x1, x2, y1, y2) is enclosed in
B′ = (x′

1, x
′
2, y

′
1, y

′
2) if [x1, x2] ⊆ [x′

1, x
′
2] and [y1, y2] ⊆ [y′

1, y
′
2].

– Given a set B{B1, . . . , Bn} of boxes, a subset B′ of B of boxes that are
pairwise compatible is said to be inextensible if every box of B that does not
belong to B′ is not compatible with at least one box of B′.

The principle of this third step is to select a subset B′ of boxes that is in-
extensible and of minimum cardinality with respect to this property of being
inextensible, then to recursively repeat this process inside each box of B′.

To extract the set B′ of boxes, we consider the Minimum Inextensible Box
Covering (MIBC) optimization problem: given a set of n boxes B = {B1, B2,
. . . , Bn}, find a subsetB′ ⊆ B of minimum cardinality such that (1) any pair
(Bi, Bj) of boxes of B′ is a pair of compatible boxes, and (2) B′ is inextensible.
Note that this problem is a variant of the Maximum Common String Par-
tition problem (MCSP) that occurs naturally in computing a gene matching
that minimizes the number of breakpoints in the resulting permutations [3,12].
This is the main reason that led us to introducing this problem for computing
gene matchings, as we think it is a very natural way to compute recursively a
gene matching from a set of boxes. However, the problem MCSP is NP-hard
[16,3] and it is then not surprising that the same result holds for the problem
MIBC (the proof is given in Appendix).

Theorem 1. The Minimum Inextensible BoxCovering problem is NP-hard.

This hardness result leads us to develop a simple greedy heuristic, inspired from
the MIBC problem, that selects an inextensible set of pairwise compatible boxes,
by iteratively selecting the box with maximal area.

MIBC_heuristic(Input: set of boxes B)
Create an empty set of boxes B’
While (B is not empty)

Select the biggest box Bi, in terms of area, in B
Add Bi to B’
Remove every box Bj of B which is incompatible with Bi

Return B’

This heuristic procedure is used recursively until only trivial boxes are left.

MIBC_main(Input: set of boxes B)
Let M=MIBC(B)
While (M contains at least one non-trivial box)

For (every non trivial box Bi of M)
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Remove Bi from M
Let B’ be the set of all boxes of B enclosed in Bi
Add MIBC(B’) to M

Return M

The time complexity of this step is polynomial in the number of boxes given
in input, which is itself quadratic in the size of the two considered genomes.

2.4 Fourth Step: Matching Genes in Trivial Boxes

Once the third step is completed, we obtain a sequence of trivial boxes, that is
boxes of alphabet of size 1, that forms the core of the final matching. Indeed, for
all squared trivial boxes of side length 1, that are boxes of area 1, we add the
pair of corresponding genes to the final matching.

The case of boxes such that more than two genes are involved is more problem-
atic, as there are several ways to match the genes of such boxes. In the present
work, we used the naive strategy that matches genes in increasing order of their
positions in the two sequences representing the two genomes. We discuss briefly
in Section 3 the influence of this strategy and, in Section 4, we describe several
strategies to improve final matching inside the trivial boxes.

3 Experimental Results

We implemented our method in a software called CIGAL (Common Intervals
Global ALigner), and we now discuss two experimental studies on two datasets:
first 8 genomes of γ-proteobacteria, then the human and mouse genomes.

3.1 Bacterial Genomes

We considered the genomes of the following organisms, that span a wide spec-
trum in the phylogeny of γ-proteobacteria [2]:

– Buchnera aphidicola APS (GenBank accession number NC_002528),
– Escherichia coli K12 (NC_000913),
– Haemophilus influenzae Rd (NC_000907),
– Pasteurella multocida Pm70 (NC_002663),
– Pseudomonas aeruginosa PA01 (NC_002516),
– Salmonella typhimurium LT2 (NC_003197),
– Xylella fastidiosa 9a5c (NC_002488),
– Yersinia pestis CO_92 (NC_003143).

We computed gene families as described in [5]. For each of the 28 pairs of
genomes, we computed 6 different gene matchings: first three matchings using the
method described in Section 2, respectively with no filtering (the corresponding
matching is denoted CI1), with filtering boxes of minimum side 1 (CI2) and 2
(CI3), then three matchings using the LCS method of [5], respectively with no
filtering (LCS1), with filtering LCS of length 1 (LCS2) and 2 (LCS3).

We considered two ways to assess the quality of the obtained gene matchings
and compare the two methods:
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– To assess the accuracy of the matching between genes, we compared the
name of coding gene as given by the database UniProt [1], and we defined a
gene pair as a true positive if both genes have the same name or synonymous
names, a false positive if the names are different and an unknown pair if one
of the two genes is not present in UniProt.

– To assess the internal consistency of both methods, we considered the 28
pairwise matchings between pairs of genomes as a graph, called the combined
matchings graph, whose vertices are the genes of the 8 genomes and edges are
given by the matchings. We then computed the proportion of the connected
components of this graph that contain at least two genes of a same genome
– we call such component inconsistent components and components with at
most one gene of each genome consistent components. Indeed such a situation
can be seen as inconsistent with respect to the goal of inferring positional
homologs that are candidates to be orthologous genes.

– Subsequently we considered only consistent components and all pairs of genes
belonging to the same components that we classified in true positives, false
positives and unknowns pairs as described above.

– Finally we classified consistent components into two categories: perfect, if all
genes in a component have the same name (all gene pairs are true positives),
and imperfect if at least two genes have different names (note that we dis-
carded components with genes that are not present in Uniprot). Finally, we
studied the distribution of perfect components with respect to their size.

The results are given in Tables 1 and 2.

Table 1. Quality of gene pairs and components

LCS1 LCS2 LCS3 CI1 CI2 CI3
True positives (TP) 19142 13968 10553 18875 13831 10420
True negatives (FP) 3045 1181 789 3324 1500 1054
Unknown pairs (UP) 14420 6244 3630 14211 6419 3818

Number of components 3439 3850 3606 3539 3408 3480
Consistent components (CC) 2907 3704 3537 3117 3147 3382

Ratio of consistent components 0.85 0.96 0.98 0.88 0.92 0.97
TP in a CC 14954 13635 10729 14954 15909 17180
FP in a CC 821 736 596 1114 1661 2433
UP in a CC 7240 5339 3558 8078 9121 11030

Number of perfect components 1531 1723 1538 1628 1817 1962
Ratio perfect/consistent 0.53 0.47 0.43 0.52 0.58 0.58

Number of imperfect components 252 240 190 320 515 687
Ratio imperfect/consistent 0.09 0.06 0.05 0.1 0.16 0.2

First, it is interesting to notice that the number of true positives gene pairs
in consistent components decreases when one reduces the minimal length of
matched LCS, which is expected, while it increases when one reduces the
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Table 2. Distribution of perfect and imperfect components by size

LCS1 LCS2 LCS3 CI1 CI2 CI3
Perfect components of size 8 258 138 71 254 259 263

Imperfect components of size 8 19 15 9 29 30 32
Perfect components of size 7 209 155 100 218 227 244

Imperfect components of size 7 34 13 9 37 45 86
Perfect components of size 6 157 145 107 172 185 215

Imperfect components of size 6 32 24 19 46 57 114
Perfect components of size 5 206 269 199 222 251 299

Imperfect components of size 5 32 39 24 44 76 135
Perfect components of size 4 236 290 246 253 344 368

Imperfect components of size 4 65 59 49 77 178 186
Perfect components of size 3 465 726 815 509 551 573

Imperfect components of size 3 70 90 80 87 129 134

minimum side of discarded boxes when using common intervals. In fact con-
sidering consistent components allows to recover true edges that were lost when
discarding boxes of short side, at the price of more false positives and unknown
pairs. However, a preliminary study of these imperfect components showed that a
significant number seems to be due to the fact that in some cases, when matching
two occurrences of a common interval, one has to deal with multiple occurrences
of a same family, a phenomenon that does not happen with LCS as the gene order
is conserved. We discuss how to improve our method on this point in Section 4.

In terms of components, and especially of consistent components, that are,
from our point of view, more important than single gene pairs, it seems that
using common intervals lead to the discovery of more (both in terms of num-
ber and of ratio) perfect components, here again at the price of more imperfect
components. However, it is interesting to notice an important difference between
both methods, in terms of the size of the inferred perfect components. Discarding
short LCS lead to the loss of large consistent components, in particular perfect
components, which is probably due to the fact that LCS represent perfectly con-
served colinear segments, and then long LCS that are present in several genomes
are quite rare and significant. Hence discarding short LCS clearly improves the
accuracy of the results but the price is that small components dominate in the
combined matchings graph. On the other hand using common intervals of se-
quences allows to find more consistent perfect components of large size – at the
price of more imperfect components – due to the less strict constraints imposed
on matched segments.

From a more biological point of view, we can notice that there seems to be a
set of approximatively 250 genes that form maximal perfect components in the
combined matchings graph of these 8 genomes. It would be interesting to study
more precisely these genes and to compare them with the set of genes used in
the phylogenomics analysis of γ-proteobacteria described in [20], or with the set
of essential bacterial genes defined in [15].
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3.2 Human and Mouse Genomes

In a second experiment, we considered the human and mouse genomes and we
compared the results of using common intervals with the method based on LCS
and with the recent MSOAR algorithm [14]. We downloaded the two genomes
from the MSOAR website and we used the gene pairs of the MSOAR hit graph
(see [14, Section 3.1]) and a single-linkage clustering to define gene families. In
a subsequent step, we deleted from the two genomes all genes that belonged to
a family present in only one genome.

Then, we computed 6 gene matchings using both the common intervals me-
thod and the LCS methods. These matchings are denoted CI1, CI2, CI3, LCS1,
LCS2 and LCS3 as in the previous experiment. Then we classified pairs of po-
sitional homologs as true positives (TP) and false positives (FP)on the base of
the gene names in Uniprot. The results are summarized in Table 3 below. The
results for MSOAR were computed from the result file available on the MSOAR
website.

Table 3. Classification of matched pairs in the gene matchings between human and
mouse

MSOAR LCS1 LCS2 LCS3 CI1 CI2 CI3
Matched pairs 13218 13380 12386 11764 13301 12737 12394
Number of TP 9214 9227 8865 8491 9186 9008 8792
Ratio of TP 0.7 0.69 0.72 0.72 0.69 0.71 0.71

Number of FP 2240 2357 1921 1749 2327 2071 1996
Ratio of FP 0.17 0.18 0.16 0.15 0.17 0.16 0.16

It appears that here again the LCS method performs better, but does lose
information faster when short LCS are filtered in comparison to the common
interval approach. Moreover, for the same reasons that we described in the pre-
vious section, we expect that improving the matchings of genes belonging to
boxes with duplicated genes will improve the accuracy of the method based on
common intervals. It would also be interesting to understand the reason why
discarding boxes with a short minimum side does not increase the number of
gene pairs, that could be due either to some properties of the method we used or
to differences in the two considered datasets, both from the combinatorial point
of view (8 genomes vs. 2 genomes) or the biological point of view.

4 Future Work

In this section we present several ideas that would improve the quality of the
matchings computed from common intervals of sequences. In particular, we be-
lieve that the general structure of our method allows very naturally to integrate
the scores of the all-against-all sequence comparison used to define gene families.
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For example, a preliminary analysis of the false positives in both experiments
presented in Section 3 suggests that a significant number of them could be cor-
rected by a less naive strategy for matching genes in trivial boxes in the fourth
step of our method. A natural improvement could consist in considering the se-
quence comparison score between the genes of these trivial boxes, picking only
pairs of genes that form a best bi-directional hit.

In the second step, we use a basic filtering criterion which rely on the size of
the boxes. But it would be of interest to consider other criteria to select the best
candidates. It could be useful, for example, to integrate here again the sequence
comparison scores as a measure of quality of boxes. This would be a very natural
way to balance the effects of the single-linkage strategy used generally to define
gene families. One could also think to more sophisticated measures of “quality”
of boxes, based on their combinatorial structure: a trivial box of size 3 × 3 is
not necessarily a better candidate than a box of size 2 × 2 with an alphabet of
size 2. Some examples of criteria, like “nestedness”, defining what is a “good gene
cluster” for genome comparison, can be found in [19].

In the third step, we considered a natural optimization problem, the MIBC
problem, that involves only the geometry of boxes, both in its definition and in
the heuristic we proposed. It would be interesting to integrate in this step the
notion of quality of the boxes, used in the second step, which would lead to a
weighted version of the MIBC problem.

From a conceptual point of view, the method we described can be seen as an
extension of the LCS method used in [5], where the constraints on the notion
of conserved structure used as anchors have been relaxed to accept rearrange-
ments and paralogs. Previous works have already relaxed the notion of LCS,
that correspond from a genomic point of view to perfectly colinear segments,
allowing insertion or deletion of genes in colinear segments [17,10]. It would be
interesting to try to combine these two models and use as anchors common seg-
ments with rearrangements, paralogs, insertions and deletions. Several models
exist like common intervals with errors [13] or gene teams, that can be computed
in polynomial time in the case of two genomes [18]. However, with such relaxed
models, the notion of quality of boxes would become more important in order
to avoid to use boxes with a weak signal but good geometrical properties.

When considering a dataset of more than two genomes, it can happen that a
phylogenetic tree is known for this dataset. In such a case, it would be interesting
to perform our pairwise genomes comparisons according to this tree, as it is
classical to do it in multiple sequences alignment. We think that such an approach
could significantly reduce the number of imperfect components.

Finally in some cases, it would be interesting to consider that a gene in a
genome can be matched with more than one other gene in the second genome.
One can think for example to genomes that have undergone one or several whole
genome duplication, like the yeasts genomes [9]. We think that common intervals
of sequences are a good model to compute such generalized matchings.
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5 Conclusion

We presented in this work a first study about using common intervals of se-
quences for computing positional homologs. The experimental results we ob-
tained are very encouraging, despite using very simple approaches for each of
the four steps of our method. In particular, the comparison of 8 bacterial genomes
seems to indicate that this approach offers a good basis for the comparison of
multiple genomes datasets.

Hence, based on this preliminary study, we believe that common intervals of
sequences should be considered as a good model for the comparison of whole
genomes, which differs from their initial application as a gene cluster model [22].

Moreover, as we described it in Section 4, the very pragmatic approach we pro-
posed, based on four steps, allows to integrate easily more sophisticated technics,
and we are currently developing some of these extensions, that will be available
in the first release of CIGAL, our Common Intervals Global ALigner.

Acknowledgments. We thank Z. Fu for providing the hit graph of MSOAR [14].
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A Proof of NP-Completeness of MIBC

We consider here the decision versions of the problems MIBC and MCSP. We
first state formally the MCSP problem. In the following, given a string S, let
S[i] and S[i..j] denote respectively the ith character of S and the substring
starting at position i and ending at position j of S. Given two strings S and T ,
a common substring of S and T is defined by a quadruplet (i, j, k, l) such that
S[i, j] = T [k, l]. Two strings S and T are balanced if every letter appears the
same number of times in S and T . According to [16], a partition of a string S
is a sequence P = (P1, P2, . . . , Pm) of strings whose concatenation is equal to
S. Let P (resp. Q) be a partition of a string S (resp. T ). The pair (P, Q) is
a common partition of S and T if Q is a permutation of P . Given a partition
P = (P1, P2, . . . , Pm) of a string, each string Pi is called a block of P . We
say that a block Pi = S[k..l] covers any substring of S[k..l]. Two blocks Pi

and Pj are disjoint if they do not both cover the same character. A common
partition (P, Q) of S and T can be naturally interpreted as a bijective mapping
from P = (P1, P2, . . . , Pm) to Q = (Q1, Q2, . . . , Qm). Given a common partition
(P, Q), we note π(i) = j if Pi is mapped to Qj . The NP-hard problem [16] MCSP
is the following: given two balanced strings S and T and a positive integer s,
find a common partition (P, Q) of S and T with at most s blocks.

For the sake of clarity, we recall here the version of the MIBC problem that
we consider below: Given a set of n boxes B = {B1, B2, . . . , Bn} and a positive
integer s′, the problem asks to find a subset B′ ⊆ B of cardinality lower than or
equal to s′, such that (1) given any pair (Bi, Bj) of boxes of B′, Bi and Bj are
compatible and (2) given any box Bm ∈ B such that Bm �∈ B′, ∃Bi ∈ B′ such
that Bi and Bm are not compatible (B′ is said to be maximal).

Clearly, MIBC problem is in NP since given a set B′ of boxes, one can check
in polynomial-time if (1) any pair of boxes of B′ is compatible, (2) B′ is maximal
and (3) |B′| ≤ s′. We show that given any instance (S, T, s) of MCSP problem,
we can construct in polynomial-time an instance (B, s′) of MIBC problem such
that there exists a common partition (P, Q) of S and T with at most s blocks iff
there exists a maximal subset of compatible boxes B′ ⊆ B of cardinality lower
than or equal to s′.

We detail this construction hereafter. Let (S, T, s) be any instance of MCSP
problem. For each common substring (i, j, k, l) of S and T , we create a box
(i, j, k, l) in B. This can be done in polynomial-time by the use of a generalized
suffix-tree for instance. In order to complete the definition of the MIBC problem
instance, we define s′: s′ = s. We denote by box-construction any construction
of this type. An illustration of a box-construction is given in Figure 1.

We now turn to proving that our construction is a polynomial-time reduction
from MCSP problem to MIBC problem.

Lemma 1. Let (S, T, s) be an instance of MCSP problem, and (B, s′) an instance
of MIBC problem obtained by a box-construction from (S, T, s). There exists a
common partition (P, Q) of S and T with at most s blocks iff there exists a maximal
subset of compatible boxes B′ ⊆ B of cardinality lower than or equal to s′.
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Fig. 1. A schematic view of the set of boxes B obtained by a box-construction of S =
cdabcda and T = abcadcd. For instance, the largest box is defined by the quadruplet
(3, 5, 1, 3).

Proof. (⇒) Suppose we have a common partition (P, Q) of S and T with m
blocks (m ≤ s). We look for a subset of compatible boxes B′ ⊆ B of cardinality
lower than or equal to s. We define this set of boxes as follows. For each pair
(Pi, Qj) such that Pi = S[si..ei], Qj = T [sj..ej ], π(i) = j, 1 ≤ i, j ≤ m,
1 ≤ si, sj, ei, ej ≤ |S|, add the box (si, ei, sj , ej) to B′.

By construction, notice that the set B′ is of cardinality equal to m, which is by
definition lower than s. Remains to us to prove that (1) B′ is a set of compatible
boxes and (2) B′ is maximal. By definition, since (P, Q) is a bijective mapping
from P to Q, for any 1 ≤ i ≤ m there exists only one 1 ≤ j ≤ m such that
π(i) = j. Moreover, since P (resp. Q) is a partition, the blocks composing P
(resp. Q) are disjoint. Therefore, given any box (si, ei, sj , ej) of B′, there is no
box (sk, ek, sl, el) in B′ such that [si, ei]

⋂
[sk, ek] �= ∅ or [sj , ej ]

⋂
[sl, el] �= ∅.

Thus, B′ is a set of compatible boxes.
Let us now prove that B′ is maximal. Suppose it is not the case. Thus, there

exists a box (si, ei, sj, ej) of B that can be added to B′ such that B′ is still
a set of compatible boxes. Then, by construction, the corresponding substrings
S[si, ei] and T [sj, ej ] are not covered by any block of P

⋃
Q. Therefore, P and

Q are not partitions of S and T ; a contradiction. Therefore, if there exists a
common partition (P, Q) of S and T with at most s blocks then there exists a
maximal subset of compatible boxes B′ ⊆ B of cardinality lower than or equal
to s′.

(⇐) Suppose we have a maximal subset of compatible boxes B′ ⊆ B of car-
dinality equal to m (m ≤ s). We look for two partitions P and Q of S and
T each with at most s blocks. We define P and Q as follows. For each box
(si, ei, sj , ej) of B′, we define a block Pi = S[si..ei] and a block Qj = T [sj..ej ].
Let P = (P1, P2, . . . , Pm) and Q = (Q1, Q2, . . . , Qm).

By construction, for each box (si, ei, sj , ej) of B′, there exist a block Pi =
S[si..ei] and a block Qj = T [sj..ej ]. By definition of a box-construction, S[si..ei]
and T [sj..ej ] are common substrings of S and T (i.e. S[si..ei] = T [sj..ej]).
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Therefore one can built a bijective mapping of P to Q where for each box
(si, ei, sj , ej) of B′, the corresponding blocks Pi and Qj are mapped (i.e. π(i) =
j). Clearly, Q is thus a permutation of P . Moreover, the partitions P and Q are
composed of exactly m blocks which is by definition lower than or equal to s. In
order to prove that (P, Q) is a common partition of S and T , it remains to us
to prove that P (resp. Q) is a partition of S (resp. T ).

First, notice that since B′ is a set of compatible boxes, in P (resp. Q) blocks
are disjoint two by two. Let us prove that the blocks of P (resp. Q) cover the
string S (resp. T ). Suppose it is not the case. Since S and T are balanced
strings, there exist a position i (resp. j) in S (resp. T ) such that S[i] (resp. T [j])
is not covered by any block of P (resp. Q) and S[i] = T [j]. By definition, since
S[i] = T [j], no box in B′ covers S[i] and T [j]. Moreover, by construction, there
exists a box (i, i, j, j) in B which could be added to B′ such that B′ will still
be a set of compatible boxes. Therefore, B′ is not maximal; a contradiction. We
just prove that if there exists a maximal subset of compatible boxes B′ ⊆ B of
cardinality lower than or equal to s′ then there exists a common partition (P, Q)
of S and T with at most s blocks. �
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Abstract. We introduce and analyse a simple discrete probabilistic
model of genome evolution. It is based on four fundamental evolutionary
events: gene duplication, loss, change and innovation, and it is called
DLCI model. This is the first such model rigorously analysed. The focus
of the paper is around the size distribution of gene families. The formu-
las for equilibrium gene family sizes are derived showing that they follow
a logarithmic distribution. We consider also a disjoint union of DLCI
models and we present the result of this study. Some empirical results
for microbial genomes are presented.

1 Introduction

Fundamental features of genome evolution are gene duplication and loss [14].
Gene duplication process creates redundancy necessary to free one copy of a
gene to evolve a new function and leads to an appearance of paralogous genes.
Recall, that any two genes evolved through a duplication from a single ancestral
gene, are called paralogs. We avoid here a discussion of this important issue of
deciding which genes are paralogous. An in depth discussion of this matter can
be found in [5]. Here, we assume that all genes have already been clustered
into groups of pairwise paralogous genes. We call such groups gene, or paralog
families. It should be also mentioned that there is no unique or canonical way
of clustering. Many different ways of clustering [6,17,23,3,2,21] may yield quite
different results.

During the last decade study of the evolution of multigene families has at-
tracted a great deal of attention in comparative genomics. It is not surprising
because the paralog families constitute a significant part of a genome, about
half of the genes have detectable paralogous gene [18]. New genes to a given lin-
eage, and thus new paralogs families, may emerge as a result of a dramatic gene
change after duplication, or via horizontal gene transfer from another species, or
by evolution of a protein-coding gene from a non-coding sequence. Genomes con-
tain gene families of various sizes and these sizes change over time. Nevertheless,
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40 D. Wójtowicz and J. Tiuryn

size distribution of gene families in a genome seems to be invariant over time
[17,18,6,7,23,8,16,20,22]. We propose a discrete model of genome evolution in the
spirit of Kimura [11], i.e. in the total absence of selective pressure or at least we
have to assume that at the genome level selective pressure does not substantially
change the shape of gene family size distribution. We are fully aware that such
a purely neutralistic model cannot be truly realistic. However, it explains the
biological observations and it can be very useful in further discussions in this
topic. The essential feature of our model is that it describes the dynamics of
the genome at the level of genes. It is based on four fundamental evolutionary
events:

– gene duplication – an event in which one gene gives rise to two genes which
cannot be operationally distinguished between themselves; they remain in
the same genome and are therefore paralogs;

– gene loss – an event which leads to a removal of a gene from the genome;
– gene change – an event (or a cumulative series of events like mutations,

rearrangements, recombinations, ...) which lead to such a modification of a
sequence that the resulting gene is no longer similar to its parental ancestor
and therefore is no longer classified as a paralog;

– gene innovation – an event which introduces new genes; it may occur through
a horizontal gene transfer between species, especially frequent in case of
bacteria or phages [12], or acquired through a series of mutations in a non-
coding part of the genome.

The model is called a DLCI model (Duplication, Loss, Change and Innovation).
We focus on a mathematical analysis of the model from the point of view of
paralog family size distribution.

Related Work
A motivation for the present work comes from the study of size distribution of
gene families in several microbial genomes which was undertaken in late 90’s.
Slonimski et al. [17], Huynen and van Nimwegen [6] and Jordan et al. [7] counted
the number of i-element families of paralogous genes (for i = 1, 2, 3, . . .) in sev-
eral genomes which have been already sequenced. They came up with different
claims concerning the shape of the observed distribution: logarithmic distribu-
tion in [17,7] (the probability of being an i-element cluster is proportional to
θi/i, where 0 < θ < 1), and power law distribution in [6] (the probability is pro-
portional to i−γ , where γ > 1). It follows from the above contradicting claims
that it may be very difficult to decide what actually is the observed distribu-
tion if we rely merely on the biological data. A decisive answer should come by
adopting a certain mathematical model of a genome evolution together with a
rigorous analysis of the distribution within this model. Yanai et al. [23] designed
a simple model of the genome evolution, but they show only that it is possible to
tune the parameters of the model to obtain the distributions that match closely
the observed paralog distributions of the genomes considered by the authors.
No mathematical analysis was given in this paper.
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A few models of genome evolution have already been presented, together
with a complete mathematical analysis of the equilibrium frequencies of paralog
families [8,9,10,16,19,20,22]. Each of these models is based on gene duplication
and loss events, but they differ in other aspects: an absence [19] or a presence of
additional evolutionary events like gene change [16,20], innovation [8,9,10,22], or
rates of events depending on family size. They also come in two flavours (with
respect to time): discrete [19,20,22] or continuous [8,9,10,16,19].

Karev et al. show in their papers [8,9,10] that depending on relative rates of
birth and death of domains in families (these rates depend on the size of the
family and are constant in time) one obtains various equilibrium distributions,
including logarithmic and power law. We show in our previous papers that in-
troducing the event of gene change (DLC model [20]) or innovation (DLI model
[22]) into the pure DL model with gene duplication and loss [19] (rates of these
evolutionary events, excluding the innovation, are constant per gene) results in
logarithmic distribution of gene family sizes, while without these features results
in geometric distribution. A model with gene change whose rate is constant per
family (rates of gene duplication and loss are still constant per gene) is consid-
ered by Reed and Hughes in [16]. They show the power law distribution of family
sizes in their model.

The main motivation of the paper is to investigate what happens when both
features are present in the model. This question was partly investigated in [1],
where the genome dynamics with both features was explored by computer sim-
ulations. To our knowledge the present paper is the first which addresses the
mathematical analysis of asymptotic gene family size distribution in the pres-
ence of gene change and innovation.

Main contributions of the paper
The main result of the paper is the statement that the asymptotic size distribu-
tion of gene families in the DLCI model is logarithmic, whose parameter depends
only on the probability of gene duplication, loss and change, and does not depend
on the rate of innovation. A precise formulation of this result is given in Theo-
rem 1. Independence of the asymptotic distribution from the rate of innovation
can also be observed for the BDIM model in the main result of [8].

The second result of the paper, Theorem 2, shows that a disjoint union of the
DLCI models results in a linear combination of logarithmic distributions. We also
give a formula for the weights of this combination. This analysis is motivated
by the fact that many gene families evolve at different rates and it is natural
to introduce different groups of paralog families, each evolving independently
according to its own DLCI model of evolution with individual parameters.

The paper is organised as follows. In Section 2 we describe the DLCI model
and present the main result concerning this model. The proof of this result is
in Section 3. Study of a disjoint union of DLCI models is presented in Sec-
tion 4. Section 5 contains a presentation of the experimental results for bacteria
genomes. Concluding remarks are presented in Section 6.
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2 DLCI Model of Evolution

In this section we describe formally the model of gene duplication, loss, change
and innovation in a genome. We view a genome as a finite collection of genes. We
treat genes as atomic objects which undergo various evolutionary events. The
events happen randomly and each gene evolves independently of other genes. The
whole process is discrete in the sense that we observe in discrete time moments
the state of the genome. In order to keep track of evolution of paralog families
we assume that each gene has its own colour. The intuition behind colours is
that two genes have the same colour if, and only if, they are paralogs. Hence
monochromatic gene families correspond to families of paralogous genes. We
assume that at our disposal we have an unlimited supply of colours. A genome is
naturally partitioned into gene families according to colours. A gene family in a
genome is the set of all genes of the genome which have the same colour. For i ≥ 1
let Ci be the collection of all i-element gene families. We call Ci the i-th class. In
the present paper we are going to study family size distributions. A family size
distribution of a genome is a probability distribution (fi)i≥1 on positive integers,
where fi = |Ci|�∞

k=1 |Ck| is the probability of observing an i-element family in the
genome.

The DLCI model is parameterised by five non-negative reals: λ, δ, κ, τ
(called evolutionary constants) and p (called a probability parameter) subjected
to the condition that (λ + δ + κ)p < 1. This model consists of two independent
subprocesses: internal and external. We describe them separately. One step of
genome evolution process is illustrated in Figure 1.

Internal subprocess: Duplication, Loss and Change (DLC) process
This subprocess describes internal changes within the genome (migration of fam-
ilies between classes and formation of new families). In one step of evolution, each
gene of genome is independently:

– duplicated with probability λp. Both copies of the gene inherit the colour of
their parent.

– lost with probability δp. The gene is removed from the genome.
– changed with probability κp. It changes its colour to a new one, not present

in the genome, i.e. the gene starts a new one-element family and is removed
from the family to which it belonged.

– remains unchanged with probability 1 − (λ + δ + κ)p.

The quantities λ, δ and κ are called duplication, loss and change constants,
respectively.

External subprocess: Innovation process
We assume that we have an external source of genes (a black box) which injects
genes into the genome randomly according to a certain distribution (πi)i≥0,
whose expected number is τp. The quantity τ is called an innovation constant.
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It means that in one step the innovation process injects on average τp genes.
We assume that the injected genes have brand new colours, i.e. colours which
do not occur in the genome, and moreover that the colours of injected genes
are pairwise different. It will turn out that the choice of the distribution of the
innovation process is irrelevant, as long as the expected number of injected genes
is finite and positive. In fact, it will follow from the main result of this paper
that the asymptotic gene family size distribution does not even depend on τ . As
we will see later innovation process stabilises the size of the genome throughout
the evolution.

Thus if we fix the evolutionary constants λ, δ, κ and τ , then we obtain a
family of DLCI models for 0 < p < (λ + δ + κ)−1.

genes paralog family from class C
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Fig. 1. Illustration of definitions and sample evolution of genome (from G to G′). Here
we use the notation pD = λp, pL = δp, pC = κp, pU = 1 − pD − pL − pC , and π2 is
a probability of injecting 2 genes into the genome by innovation process.

We assume throughout this paper that the initial genome consists of K > 0
one-element gene families. In order to keep the size of the genome finite at the
equilibrium we need to make some assumptions on the parameters of the model.
Observe that when λ > δ then the size of the genome grows exponentially
fast due to the internal subprocess. So, addition of innovation makes things
even worse. On the other hand when λ < δ, then internal subprocess causes
the number of genes decrease exponentially fast, but in this case innovation
compensates for this loss. This follows from the following simple computation.
Given K genes in the genome, in the next step there are on average (δ − λ)pK
genes lost due to internal subprocess and τp genes introduced due to innovation.
Hence, on average, the size of the genome in the next step is τp+(1−δp+λp)K.
Repeating this argument n times and passing with n to infinity immediately
yields the asymptotic size of the genome equal to τ/(δ − λ). It is also easy to
notice that if λ = δ, then the average size of the genome grows only linearly to
infinity. Thus we assume that λ < δ to keep the size of genome finite.

Now we can state the main result of our paper.
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Theorem 1. For any positive evolutionary constants λ, δ, κ and τ , such that
λ < δ, if p > 0 is sufficiently small, then for a sufficiently large number of
evolution steps the observed family size distribution in the genome is close to the
logarithmic distribution with parameter θ, i.e. the probability of observing an i-
element family in the genome is close to C · θi/i, where θ = λ/(δ + κ), and C is
a normalising constant. Moreover the size of the genome is close to τ/(δ−λ). All
the above properties do not depend on the initial size K of the genome, subject
to the condition that initially all genes have pairwise different colours.

3 Sketch of the Proof of Theorem 1

Let E
(n)
i be the expected number of i-element families in the above presented

process of evolution after n steps (i ≥ 1, n ≥ 0). Assuming that the initial
genome has K genes with pairwise different colours, we have E

(0)
1 = K and

E
(0)
j = 0 for j > 1. For n > 0, we obtain an infinite system of equations for

(E(n)
i )i≥1:{

E
(n)
1 =

∑∞
j=1 E

(n−1)
j · P(j � 1) + κp

∑∞
j=1 j · E

(n−1)
j + τp

E
(n)
i =

∑∞
j=1 E

(n−1)
j · P(j � i) for i > 1,

(1)

where P(j � i) =
∑�i/2�

k=0

(
j

i−2k,k

)
(1 − (λ + δ + κ)p)i−2k(λp)k((δ + κ)p)j−i+k, for

i, j ≥ 1, is the probability that a gene family of size j gets size i as a result of an
internal process of the genome. The situation is slightly different for i = 1 since
singletons, in addition to the obvious possibility of arriving from other classes
by adjusting their size, could have been also created by gene change event or
innovation process. The expected number of singletons created by change of
genes from one j-element family equals j · κp, thus (1) follows.

Let Q = (P(j � i))j,i≥1, T = (τp, 0, 0, . . .) and N = (nj,i)j,i≥1, where nj,1 = j
and nj,i = 0 for j ≥ 1 and i > 1. System of equations (1) can be rewritten
in matrix notation: (E(n)

1 , E
(n)
2 , E

(n)
3 , . . .) = (E(n−1)

1 , E
(n−1)
2 , E

(n−1)
3 , . . .)(Q +

κpN) + T . It follows that

(E(n)
1 , E

(n)
2 , E

(n)
3 , . . .) = (K, 0, 0, . . .)(Q + κpN)n + T

n−1∑
i=0

(Q + κpN)i (2)

for all n ≥ 0. We are interested in the asymptotic distribution which is derived
from (2), when n tends to infinity. Notice that a priori it is not clear that such
a distribution always exists.

For i ≥ 1, let q
(n)
p,i be a probability that a random family in the genome after

n steps of evolution process has size i. We keep the parameter p explicit since
we will study the distribution when p tends to zero. Then

q
(n)
p,i =

E
(n)
i∑∞

j=1 E
(n)
j

. (3)
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Of course, for every n ≥ 0 the distribution
(
q
(n)
p,i

)
i≥1

exists. The next result

says that the asymptotic distribution exists too.

Proposition 1 (Existence of asymptotic distribution). Let λ, δ, κ and τ
be positive constants such that λ < δ, and let 0 < p < (λ + δ + κ)−1. Then there
exists the asymptotic distribution of gene family sizes:

(qp,i)i≥1 = lim
n→∞

(
q
(n)
p,i

)
i≥1

.

Sketch of proof : The idea of this proof is similar to the proof presented in
our previous paper [19]. It uses generating functions1. Thus, let fp,n(x) be a

probability generating function for the distribution
(
q
(n)
p,i

)
i≥1

, i.e. fp,n(x) =∑∞
i=1 q

(n)
p,i xi. We have to show that the limit function fp(x) = lim

n→∞fp,n(x) exists.

We start with the generating function dp,n for the sequence E(n) =
(
E

(n)
i

)
i≥1

,

i.e. dp,n(x) =
∑∞

i=1 E
(n)
i xi. We have shown in [20] (see equation (20)) that if

τ = 0, than the generating function for E(n) is gp,n(x)−gp,n(0), where gp,n(x) =
ϕ(n)(x)+κpγn−1 ∑n−1

i=1 ϕ(i)(x)/γi, γ = 1− (δ −λ)p, ϕ(x) = (δ +κ)p+(1− (λ+
δ + κ)p)x + λpx2 and ϕ(i) is i-fold composition of ϕ with itself (with ϕ(0) being
the identity function). Thus, it follows from equation (2) that the generating
function for E(n) is dp,n(x) = hp,n(x) − hp,n(0), where hp,n(x) = Kgp,n(x) +
τp

∑n−1
i=1 gp,n(x). Notice, that dp,n(1) is the number of families in the genome

after n steps of the process. Thus we have fp,n(x) = dp,n(x)/dp,n(1).
Next, it follows from Lemma 2 in [20] that for every |x| < (δ + κ)/λ, there

exists the limit cp(x) = limn→∞(dp,n(1)−dp,n(x)), which is finite. Moreover, for
x ≥ 0 we have: cp(x) = 0 iff x = 1. Thus the limit function fp(x) exists. �

It can be also proved, using Vitali’s Theorem, that fp is an analytic function
with radius of convergence θ−1 = (δ + κ)/λ. Moreover, it satisfies the following
functional equation

fp(ϕ(x)) = fp(x) +
τp

cp(0)
δ + κ − λ

δ − λ
(1 − x). (4)

See a similar argument in the proof of Theorem 1 in [20]. It should be also clear
that cp(0) = limn→∞ dp,n(1) is the asymptotic number of families in the genome.

It follows from the theory of analytic function (the identity property) that
function fp is the unique analytic function which satisfies (4) and the constraint
fp(0) = 0. In this sense, the distribution (qp,i)i≥1 is completely characterised
by (4). Unfortunately, it cannot be expressed by elementary functions.

1 Let S = (si)i∈I be a sequence of reals and I be a subset of non-negative integers. A
generating function for S is a function f defined by power series f(x) =

�
i∈I six

i.
When S is a probability distribution then the generating function f is called proba-
bility generating function. See [4].
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Now we can conclude the proof of Theorem 1. It follows from equation (4)
that

fp(ϕ(x)) − fp(x)
ϕ(x) − x

=
τp

cp(0)
δ + κ − λ

δ − λ

1 − x

ϕ(x) − x
=

τ

cp(0)
δ + κ − λ

δ − λ

1
δ + κ − λx

.

Intuitively it should be clear that the left side of the above equation tends to
f ′(x), as p → 0+, because of limp→0+ ϕ(x) = x. Rigorously, it can be explained
using similar arguments to those in the proof of Theorem 2 in [20]. It can be
also shown (see a similar proof of Lemma 6 in [20]) that there exists the limit

c = lim
p→0+

cp(0) =
τ(δ + κ − λ)
Cλ(δ − λ)

, (5)

where C = (− ln(1 − θ))−1. The constant c is the asymptotic (with p → 0+,
n → ∞) number of families in the genome. Thus, we get a differential equation
f ′(x) = −C/(x − θ−1). Solving it, with constraint f(0) = 0, we obtain

f(x) = −C · ln(1 − θx) = C ·
∞∑

i=1

θi

i
xi.

This completes sketch of the proof of Theorem 1.

4 Disjoint Union of DLCI Models

It is well known that gene families evolve at different rates [13,6], and there is
a coherent behaviour of genes from one family, i.e. genes from the same family
have the same probabilities of duplication and loss. For example, families that
are responsible for life processes of an organism possibly do not show propensity
to high change over time. Thus it is natural to assume that we have different
groups of paralog families, each group evolving according to a DLCI model with
individual parameters of gene duplication, loss, change and innovation.

Let M > 0 be a number of different groups of gene families in the above
sense. Thus we have a family of M DLCI models with parameters (λm, δm, κm,
τm, pm)M

m=1, where λm, δm, κm and τm are evolutionary constants and pm is a
probability parameter in the m-th group of families. We also assume that initially
the m-th group has Km > 0 one-element gene families, for m = 1, . . . , M .
Without loss of generality we may assume that pm = p, for all m = 1, . . . , M
(otherwise we can change the values of evolutionary constants). Let us call this
model, an M -DLCI model.

Let E
(n)
m,i be the expected number of i-element families in the m-th group

of paralog families after n steps of the M -DLCI evolution process. Thus, an
expected number of i-element families after n steps of the process equals E

(n)
i =∑M

m=1 E
(n)
m,i and the probability of observing in the genome after n steps an

i-element family equals (compare it with equation (3)):

q
(n)
p,i =

∑M
m=1 E

(n)
m,i∑∞

j=1
∑M

k=1 E
(n)
k,j

. (6)



On Genome Evolution with Accumulated Change and Innovation 47

It should be clear that the asymptotic size distribution of paralog families
in M -DLC model is a mixture of M logarithmic distributions with parameters
θm = λm/(δm +κm) (for m = 1, 2, . . . , M). We state it precisely in the following
theorem.

Theorem 2. Let λm, δm, κm, τm > 0 such that λm < δm for all m = 1, . . . , M .
Then for a sufficiently small value of p > 0 and a sufficiently large number of
steps of the evolution process, the size distribution of paralog families in M -DLCI
model tends to the mixture of logarithmic distributions:

PM-DLCI(i) ≈
M∑

m=1

αm · Cm
θi

m

i
i = 1, 2, 3, . . . ,

where θm = λm

δm+κm
, Cm = (− ln(1− θm))−1 and αm = cm�M

k=1 ck
is an asymptotic

fraction of families in the m-th group among all families (the value of cm is
defined by (7)).

Sketch of proof : We transform equation (6) into q
(n)
p,i =

∑M
m=1 α

(n)
m,p · q

(n)
m,p,i,

where α
(n)
m,p =

�∞
j=1 E

(n)
m,j

�M
k=1
�∞

j=1 E
(n)
k,j

and q
(n)
m,p,i =

E
(n)
m,i

�∞
j=1 E

(n)
m,j

. We have already know,

from the analysis of DLCI model (see Theorem 1), that

lim
p→0+

lim
n→∞ q

(n)
m,p,i = Cm

θi
m

i
.

Thus, we have to find αm = limp→0+ limn→∞ α
(n)
m,p. It follows from the proof

of Proposition 1 that limn→∞
∑∞

j=1 E
(n)
m,j = cm,p(0). Next using (5) we have

cm = lim
p→0+

cm,p(0) =
τm(δm + κm − λm)
Cmλm(δm − λm)

. (7)

Thus αm = cm�M
k=1 ck

, and this completes sketch of the proof. �


5 Experimental Results

In order to compare the observed families of paralogous genes with the values
predicted by our model we have examined 17 bacterial genomes, which are listed
in Table 1. The paralogous families of these genomes were taken from TIGR-
CMR [15] web service2.

It is known that the distribution of large families of paralogous genes in organ-
isms is very uneven [6,8,17]: large families may span hundreds of classes, most of
them empty. For this reason some researchers [17,18] restrict an analysis of fam-
ilies to small classes (cluster size 2 through 6), while others [6,8] group families
2 http://www.tigr.org/tigr-scripts/CMR2/paralog info form.spl
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into bins, each containing a certain prespecified minimal number of families. In
our analysis we choose the latter method. The observed data was fitted to a mix-
ture of two logarithmic distributions P2-DLCI(i) = α1 · C1θ

i
1/i + (1 − α1) · C2θ

i
2/i

and the parameters θ1, θ2 and α1 were chosen to minimise the value of Pear-
son’s χ2–test. For each genome, before the χ2–test was evaluated we grouped
the observed paralog family frequencies into bins, each containing at least 10
families. We put whole classes into bins. As long as the total number of fam-
ilies in the bin is less than 10, we put the next class into it. For 14 out of 17
analysed genomes P (χ2) for this model was at least 5%, i.e. no significant dif-
ference between the observed and predicted values was detected. The size of the
largest family, the values of parameters θ1, θ2, α1 and the goodness-of-fit P (χ2)
for analysed genomes are presented in Table 1.

Table 1. Paralogous families in bacterial genomes [15] and the parameters of best-fit
2-DLI model

Genome max. fam. 2-DLI model
size θ1 θ2 α1 P (χ2)

Bacillus anthracis Ames 107 0.62 0.95 0.76 80 %
Burkholderia mallei 109 0.69 0.97 0.68 25%
Caulobacter crescentus 70 0.37 0.91 0.53 4%
Colwellia psychrerythraea 81 0.66 0.98 0.85 52%
Dehalococcoides ethenogenes 34 0.55 0.96 0.82 47%
Desulfovibrio vulgaris Hildenborough 89 0.64 0.99 0.89 58%
Enterococcus faecalis 87 0.35 0.90 0.53 35%
Geobacter sulfurreduncens 108 0.66 0.97 0.80 5%
Listeria monocytogenes 78 0.42 0.89 0.46 38%
Methylococcus capsulatus Bath 37 0.56 0.92 0.73 74%
Mycobacterium tuberculosis 77 0.32 0.89 0.46 13%
Myxococcus xanthus 236 0.79 0.97 0.78 10%
Pseudomonas fluorescens 140 0.74 0.98 0.77 52%
Pseudomonas putida 110 0.67 0.95 0.65 22%
Pseudomonas syringae 116 0.60 0.97 0.73 1%
Pseudomonas syringae pv phaseolicola 110 0.67 0.97 0.83 4%
Silicibacter pomeroyi 114 0.51 0.93 0.52 13%

It follows from Table 1 that constants θ1, θ2 and α1 for bacterial genomes are
grouped around 0.58 (±0.14), 0.95 (±0.03) and 0.69 (±0.14), respectively. Un-
fortunately, as noticed in [20,22], these constants strictly depend on the method
of clustering paralogous genes. Concentration of the value of the mixture weight
α1 around 0.69 indicates that majority of gene families is subject to the first
process (with parameter θ1). Since θ2 is much bigger than θ1 and close to 1, it
follows that the second group is mostly responsible for large families, that are
more evolutionarily conserved.
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6 Conclusions

We present in this paper a simple probabilistic model of genome evolution, which
includes four types of events: gene duplication, loss, accumulated change and
innovation. This is the first model which is based on all these events. Previous
models of this process (known in the literature) consider only subsets of these
four events. We show that the observed family size distribution in the DLCI
model is close to the logarithmic distribution. What is perhaps little unexpected
is that this distribution does not depend on the innovation constant and it only
depends on relative constants of duplication, loss and change. We propose also
a disjoint union of DLCI models and conclude that the resulting distribution is
a linear combination of logarithmic distributions.

Presently power law distribution is considered in the literature [6,8,9,10,16,21]
as the best fitting distribution for gene family sizes for practically all genomes
(a mixture of distributions was not widely considered in this context). We show,
taking a reasonable and natural assumption about the existence of groups of fam-
ilies with individual evolutionary rates/constants, that a linear combination of
logarithmic distributions can also properly explain the observed data. However,
we realize that it is impossible to find statistically significant difference between
these two kinds of distributions because the number of families in genomes is too
small and there is only a dozen of bins of family classes. Thus we do not claim
that our model is the most accurate description of genome evolution, but even
this simple model reveals some potentially interesting aspects of this process.

An interesting topic of further research is to investigate the role of changing
the rates of evolutionary constants as a function of the family size. In our DLCI
model, these rates show a simple proportionality to this size. This is motivated
by the fact that large families are more evolutionarily conserved then the small
ones, and thus for example it seems that they should have lower rate of gene
change. It is obvious that a selective pressure also plays a critical role in the
genome evolution and it is still not considered in models in the context of gene
family size distribution analysis.
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Abstract. We study the probability distribution of genomic distance d
under the hypothesis of random gene order. We interpret the random
order assumption in terms of a stochastic method for constructing the
alternating colour cycles in the decomposition of the bicoloured break-
point graph. For two random genomes of length n and χ chromosomes,
we show that the expectation of n + χ − d is O( 1

2 log n+χ
2χ

+ 3
2χ). We

then discuss how to extend these analyses to the case where intra- and
interchromosomal operations have different probabilities.

1 Introduction

Though there is a large literature on chromosomal rearrangements in genome
evolution and algorithms for inferring them from comparative maps, there is
a need for ways to statistically validate the results. Are the characteristics of
the evolutionary history of two related genomes as inferred from an algorith-
mic analysis different from the chance patterns obtained from two unrelated
genomes? Implicit in this question is the notion that the null hypothesis for
genome comparison is provided by two genomes, where the order of markers
(genes, segments or other) in one is an appropriately randomized permutation
of the order in the other. In a previous paper [5], we formalized this notion for
the case of the comparison of two random circular genomes, such as are found in
prokaryotes and in eukaryotic organelles. We found that the expected number of
inversions necessary to convert one genome into the other is n−O(1

2 log n), where
n is the number of segments (or other markers). Related work has been done by
R. Friedberg (personal communication) and by Eriksen and Hultman [1].

In another paper [4], we used simulations to throw doubt on whether the order
of syntenic blocks on human and mouse retains enough evolutionary signal to
distinguish it from the case where the blocks on each chromosome are randomly
permuted.

In this paper, we begin to bridge the gap between mathematical analysis of
simple genomes and simulation studies of advanced genomes. We extend the
mathematical approach in [5] to the more difficult case of genomes with mul-
tiple linear chromosomes, such as those of eukaryotic nuclear genomes, which
not only undergo inversion of chromosomal segments, but also interchromoso-
mal translocation. The presence of chromosomal endpoints changes the problem
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in a non-trivial way, requiring new mathematical developments. Key to our ap-
proach in this and previous papers is the introduction of randomness into the
construction of the breakpoint graph rather than into the genomes themselves,
which facilitates the analysis without materially affecting the results. One aspect
of this is that the random genomes with multiple linear chromosomes may also
include one or more small circular fragments, or plasmids.

Our main result is that the number of operations necessary to convert one
genome into the other is n − O(1

2 log n+χ
2χ + 3

2χ), where χ is the number of
chromosomes in each genome. This result is validated by exact calculations of
a recurrence up to large values of n and χ, by simulations, by analytic solution
of a somewhat relaxed model, and by solving the limiting differential equation
derived from the recurrence.

We also propose models where the the randomness is constrained to assure
a realistic predominance of inversion over translocation. We use simulations of
this model to demonstrate how key properties of the breakpoint graph depend
on the proportion of intra- versus interchromosomal exchanges.

2 The Breakpoint Graph: Definitions and Constructions

Genomic distances can be efficiently computed using the bicoloured breakpoint
graph. In this graph, the 2n vertices are the 5’ and the 3’ ends of each marker, be
it a gene, a probe or a chromosomal segment, occurring orthologously in both
genomes. The edges represent the adjacencies between the ends of successive
markers on either DNA strand in the two genomes. We colour the edges from
one genome (R) red, the other (B) black. With the addition of dummy ver-
tices (caps) at the endpoints of the χR and χB linear chromosomes, and dummy
edges connecting each cap to one marker end, the breakpoint graph decomposes
automatically into alternating colour cycles and alternating colour paths, the
latter starting and terminating at caps. The number b of breakpoints – marker
adjacencies in one genome not occurring in the other genome – and the number
κ of cycles and paths in the breakpoint graph are the dominant components
in formulae for genomic distance. Indeed, with the slightly generalized notions
of breakpoint and cycle in reference [7], the most inclusive formulation of ge-
nomic distance, encompassing inversions, reciprocal translocations, chromosome
fission and fusion, and block exchange (including transposition), where the latter
operation is counted as two steps, the genome distance d satisfies

d = b − κ. (1)

We add red caps to both ends of each chromosome in R and black caps to both
ends of each chromosome in B. The breakpoint graph has 2n + 2χR + 2χB ver-
tices corresponding to the 2n marker ends and the 2χR red caps and 2χB black
caps. The adjacencies in R determine n−χR red edges and the adjacencies in B
determine n−χB black edges. The caps adjacent to chromosome ends determine
a further 2χR red edges and 2χB black edges, for a total of n+χR red edges and
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n + χB black edges. Because each marker vertex is incident to exactly one red
and one black edge, the graph decomposes naturally into χR + χB alternating
colour paths and one or more disjoint alternating colour cycles.

3 The Randomness Hypothesis and the Relaxation of
Linearity

The key to a mathematically tractable model of random genomes is to relax
the constraint that genomes B and R are composed only of χR and χB linear
chromosomes. The only structure we impose, in each genome separately, is that
every cap is adjacent to a non-cap vertex and every vertex is adjacent to one
other vertex or to a cap, and that these pairings, which define the black lines
from genome B and the red lines from genome R in the breakpoint graph, are
constructed at random from the 2n vertices and 2χR or 2χB caps. Since every
vertex is incident to exactly one black line and one red line as before, the break-
point graph still decomposes into disjoint alternating colour paths and cycles.
Studying the statistical structure of the set of paths and cycles is facilitated by
relaxing the condition that genomes B and R are composed only of χR and χB

linear chromosomes, but the consequence is that the random choice of vertices
defines a genome that contains not only this number of linear chromosomes, but
also in general several circular plasmids. There are partial mathematical results
(Theorem 1.4 in [2]) which strongly suggest that this relaxation does no violence
to the probabilistic structure of the breakpoint graph.

Fig. 1. Random matching gives rise to plasmids (when x and x′ are two ends of the
same marker) as well as linear chromosomes (when x and x′ are two caps.)

For example, consider any vertex v, as in Figure 1. The chromosome contain-
ing v in genome R also contains v′, the vertex at the other end of the same
marker. It also contains u′ and w, where u′ and v are chosen by the random
process to be adjacent in that genome, the vertex w adjacent to v′, as well as
w and u, and so on. Eventually, the two ends of construction will arrive at the
two ends of a single marker, closing the circle, or two red caps, defining a linear
chromosome.

Note that these considerations are independent of the properties of the alter-
nating cycle containing v in the breakpoint graph, which would require informa-
tion about both genomes R and B.
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4 How Many Paths and Cycles?

In Section 3, we discussed the structure of the individual genomes. We now
examine the structure of the breakpoint graph determined by the two genomes.

We will assume χR = χB = χ to simplify the presentation; the full version
of this paper will give the details for the general case of different numbers of
chromosomes in R and B.

4.1 The Case of No Caps – Circular Chromosomes

In [5], we pointed out that in the relaxed model for a random genome without
caps, the the expected number of cycles approaches

κ = log 2 +
γ

2
+

1
2

log n, (2)

where γ = limn→∞
[∑n

i=1
1
i − log n

]
= 0.577 . . . is Euler’s constant. We also

cited partial mathematical results [2] and carried out simulations, both of which
indicate that (2) also holds true without the relaxation, i.e. where each genome
consists of a single DNA circle.

4.2 Linear Chromosomes

Where there are χ > 0 linear chromosomes, so that each genome is assigned
2χ caps, we can take an initial view of the model as a random ordering of 2n
“colourless” vertices and 2χ coloured vertices, where 2χ − 1 of the latter each
represent the concatenation of two caps, one at the end of one path and one at
the beginning of another path, while one vertex represents the end of the last
(2χ-th) path. The vertices ordered after the latter must be on cycles rather than
paths, and will be reordered in a later step.

What proportion of the vertices are on each path? As n → ∞, the model
becomes simply that of a random uniform distribution of 2χ points (the concate-
nated two-cap vertices and the final single cap) on the unit interval. The probabil-
ity density of the distance between two order statistics xk and xk+1, representing
the length of an alternating colour path, is the same for all 0 ≤ k ≤ 2χ−1, where
x0 = 0:

q(xk+1 − xk) = 2χ(1 − (xk+1 − xk))2χ−1, (3)

with mean 1/(2χ+1) and variance χ/[(2χ+1)2(χ+1)]. The probability density
of the last order statistic, representing the sum of the lengths of all 2χ paths, is

qΣ(x2χ) = 2χx2χ−1
2χ , (4)

with mean 2χ/(2χ + 1) and variance χ/[(2χ + 1)2(χ + 1)].
For the purposes of calculating genomic distance, it is convenient to introduce

a certain asymmetry between the red and black genomes. Formula (1) is generally
equivalent to

d = b + χ − κ − ψ, (5)



Paths and Cycles in Breakpoint Graphs 55

where ψ is the number of paths having at least one red cap. The explanation for
this can be traced in [6] and [7]. Where the caps are distributed randomly, as in
our model, the proportion of such paths is 3

4 , and the expected value of ψ is 3
2χ.

4.3 Cycles

The proportion of the genomes that is in cycles is just what is left over after the
paths are calculated, in the limit 1 − x2χ. We ignore the initial linear ordering
of the these remaining vertices and instead choose two new random bipartite
matchings among them, representing their configurations in genomes R and B.
Then, in the limit, the number of cycles that will be constructed from this
proportion of the genome is κχ(x2χ) = log 2 + γ

2 + 1
2 log[(n + χ)(1 − x2χ)], from

(2). Thus, from (4), the expectation of of the random variable κχ is∫ 1

0
κχ(x)qΣ(x)dx

=
∫ 1

0

2χ

2
log(1 − x)x2χ−1dx + log 2 +

γ

2
+

log(n + χ)
2

= log 2 +
1
2

[
−

2χ∑
i=1

1
i

+ γ + log(n + χ)

]

∼ log 2 +
1
2

log
n + χ

2χ
. (6)

While we will confirm the second term in (6) in subsequent sections, the log 2
term is likely an extraneous result of our mathematical interpretation of the
random linear chromosome model in the previous paragraph, Section 4.2, or the
separate passages to the limit forms of κχ and qΣ before integrating.

5 An Exact Recurrence for the Expected Number of
Cycles

We build the random breakpoint graph as follows. First we construct R as a
random match of the 2n labelled vertices and 2χ red caps, under the condition
that no caps are matched to each other. Then we construct B as a random
match of the 2n vertices, using black edges as in Figure 21 We will calculate the
expected number of cycles completed during this construction by studying what
happens as each edge in B is added,

Consider the connected components of the graph at any stage during its con-
struction. They are either cycles, inner edges (paths incident to no cap), cap
edges (paths incident to exactly one cap), or completed paths (with caps at ei-
ther end). Let N(κ, l, m) be the number of (equiprobable) ways graphs with κ

1 We may ignore the black caps and cap edges in this process, since each step consists
of joining two red vertices by a black edge.
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Operations:

create cycle extend inner edge

………

… …

… …

Initial configuration:

n genes with 2 caps

cap
edge

inner
edge

…
extend cap edge

close two cap edges

Fig. 2. Initial configuration of edges and caps. Operations of extending inner edges or
cap edges and completing cycles or paths.

cycles are produced by this process starting with l inner edges and 2m cap edges.
Initially m = χ and l = n − χ, composed entirely of red edges.

There are
(2m+2l

2

)
ways of adding a black edge:

– The number of cycles can be increased by 1 if the two ends of an inner edge
are connected. This decreases l by 1 and may happen in l ways.

– Two inner edges can be connected to form one inner edge. Again l decreases
by 1. This can be done in

(2l
2

)
− l ways.

– One end of an inner edge is connected to a cap end. Again l decreases by 1.
This can be done in 4lm ways

– Two cap ends are connected. Here 2m decreases by 2, and m decreases by
1. This can be done in

(2m
2

)
ways

Then

N(κ, l, m) = lN(κ − 1, l − 1, m)

+ (
(

2l

2

)
− l + 4lm)N(κ, l − 1, m)

+
(

2m

2

)
N(κ, l, m − 1), (7)

where N(κ, 0, m) = 0 for κ > 0 and N(0, 0, m) = (2m)!/2m, for all positive m.
The expected number of cycles constructed during our procedure will be

E[κ(l, m)] =
∑

κ κN(κ, l, m)∑
κ N(κ, l, m)

=
∑

κ κN(κ, l, m)∏l+m
i=1

(2i
2

) (8)
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Fig. 3. Simulations for χ = 20 and n ranging from 500 to 10,000. Each point represents
the average of 100 pairs of random genomes.

since there are
∏l+m

i=1

(2i
2

)
ways of adding black edges until the number of inner

edges and the number of cap edges are both zero.
From (7) and (8), we find that

E[κ(l, m)] =
2m(2m − 1)

(2l + 2m)(2l + 2m − 1)
E[κ(l, m − 1)]

+[1 − 2m(2m − 1)
(2l + 2m)(2l + 2m − 1)

]E[κ(l − 1, m)]

+
2l

(2l + 2m)(2l + 2m − 1)
. (9)

6 Limiting Behavior of E[κ(n, χ)]

Motivated by equation (6), if we calculate E[κ(l, m)] for a large range of values
of l and m, we find that to a very high degree of precision, the values fit

E[κ(n, χ)] =
1
2

log
n + χ

2χ
, (10)

without the log 2 term in equation (6).
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Furthermore, when we simulate 100 pairs of random genomes with 20 chro-
mosomes, for a large range of values of n, using a strictly ordered model rather
than the relaxed models in Sections 4-5 above, and count the number of cycles
in their breakpoint graphs, the average trend corresponds well to equation (10).
This is seen in Figure 3.

Rewriting recurrence (9) for t(l, m) = E[κ(l, m)] as

t(l, m) − t(l − 1, m) =
2m(2m − 1)

(2l + 2m)(2l + 2m − 1)
× [t(l, m−1) − t(l − 1, m − 1)−t(l −1, m) + t(l − 1, m−1)]

+
2l

(2l + 2m)(2l + 2m − 1)
, (11)

suggests that any limiting formulation for t should satisfy the equation:

dt

dl
=

2m(2m − 1)
(2l + 2m)(2l + 2m − 1)

(
dt

dm
− dt

dl
) +

2l

(2l + 2m)(2l + 2m − 1)
. (12)

The solutions of (12) are of form t = 1
2 log l+m

2m + C, for any constant C. This
confirms that E[κ] is O(1

2 log n+χ
2χ ). Comparison with the boundary condition

χ = n in the discrete model, where each chromosome in our construction starts
with two cap edges and no inner edges, so that κ ≡ 0, further confirms the
computationally-established value of C = 0.

7 Differential Rates of Inversion and Translocation

The models we have been investigating assume that adjacencies between vertices
are randomly established in one genome independently of the process in the other
genome. For multichromosomal genomes, this means that the probability that
any particular pair of adjacent vertices in the black genome are on the same
chromosome in the red genome is of the order of χ−1. This suggests that there
are far fewer intrachromosomal exchanges during evolution than interchromoso-
mal, in the approximate ratio of χ−1 : 1, which, in the mammalian case, comes
to about 0.05 : 1, a tiny minority. In point of fact, intrachromosomal processes
such as inversion represent not a minority, but a substantial majority of evo-
lutionary events. Table 1 gives the estimated ratio of intrachromosomal events
to interchromosomal events among six vertebrate species. This ratio depends
on the resolution of the syntenic block evidence used to estimate the events; at
finer resolutions than the 1 Mb used for the table, the ratio increases consider-
ably. Even for the mouse-dog comparison the ratio is more than 1 at a 300 Kb
resolution, while most of the other comparisons have a 2 : 1 ratio or more.

What is the importance of this tendency for our theoretical analysis? First,
there is no direct connection between the number of translocations among pairs
of chromosomes and the number of adjacent vertex pairs in one genome that are
on different chromosomes in the other, though they are roughly correlated; in
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Table 1. Ratio of intrachromosomal events to interchromosomal ones, at a resolution
of 1Mb. Calculated from estimates in [3]. Asymmetries due to construction of primary
data sets in the UCSC Genome Browser and to asymmetry in the estimator used.

human mouse chimp rat dog chicken
human \ 1.2 - 1.6 1.7 2.9
mouse 1.3 \ 1.1 2.3 0.7 1.3
chimp 15 1.4 \ - - -
rat 1.5 1.7 - \ - -
dog 1.9 0.7 - - \ -
chicken 4.5 1.8 - - - \

some examples, a single translocation could “remove” many such edges. Never-
theless, these edges are the only obvious property of the breakpoint graph that
we can model. For example, in our derivation of the recurrence (9) in Section
5, we could divide the end vertices of inner edges into χ classes corresponding
to the χ chromosomes, as in Figure 4. Then by adjusting the relative proba-
bilities of choosing intra-class edges versus inter-class edges, we can indirectly
model differing proportions of inversions versus translocations. The removal of
the simplifying assumption of equiprobable edge choice, however, would greatly
complicate the analysis leading up to (9) and hence to (10).

Fig. 4. Partitioning vertices into classes according to chromosomes in genome R. Two
kinds of edges with differing probabilities, corresponding roughly to inversion versus
translocation rates.

Leaving the theoretical aspects open, then, we propose a simulation approach
to the question of the how the inversion-translocation ratio affects the breakpoint
graph. For this simulation, our choice of parameters is inspired by the human-
mouse comparison with 270 syntenic autosomal blocks at a resolution of 1 Mb.
For simplicity we set χ = 20 in both genomes. We know the genomic distance
is about 240, but because of breakpoint reuse we need to use 405 operations for
the algorithm to infer 240 (and there will obviously be little connection between
the operations inferred by the algorithm and the operations actually producing
the genomes).

We initialized the simulations with a genome having a distribution of chro-
mosome sizes, in terms of numbers of blocks, patterned roughly after the human
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Fig. 5. Effect of changing inversion-translocation proportions. Open dots: before dis-
carding 2-cycles. Filled dots: after discarding 2-cycles.

genome. We then used random inversions and random translocations to pro-
duce the second genome. The translocations were conditioned not to result in
chromosomes smaller than a certain threshold or larger than a certain cap.

We sampled 10 runs with r inversions per chromosome and 405−20r translo-
cations, for each r = 1, . . . , 20. In Figure 5, we show that the average inferred
distance (normalized by dividing by 270, the number of blocks) rises slowly with
the increasing proportion of inversions, then falls precipitously as translocations
became very rare. One artifact in this result is due to “two-cycles”, representing
genes that are adjacent in both genomes. In the breakpoint graphs of random
genomes, 2-cycles occur rarely; the expected number of them has a limiting prob-
ability of 1

2 . And there are no 2-cycles in breakpoint graphs created from real
genome sequence data. (If two syntenic blocks were adjacent and in the same
orientation in both genomes, they would simply be amalgamated and treated
as a single, larger, block.) Breakpoint graphs created from random inversions
and translocations, however, will tend to retain some 2-cycles even after a large
number of operations. It takes a very large number of operations before we can
be sure that all adjacencies will be disrupted. For the sake of comparability,
therefore, we should discard all two cycles and reduce n by a corresponding
amount. This done in Figure 5 and it does reduce somewhat the variability of
the normalized distance with respect to the inversion-translocation proportion,
because the number of 2-cycles rises from about 10 per run when there are few
inversions per chromosome, to more than 20 per run when there are 19 or 20
inversions per chromosome, and very few translocations.

Nevertheless, there remains two clear effects, an initial rise in the genomic
distance, which will not discuss here, and a larger drop in the distance when
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nearly all the operations are inversions. This drop is largely accounted for by
an increase in the number of cycles from an average of 2 per run when there
are less than 15 inversions per chromosome to 10 cycles per run, when there
are 20 inversions per chromosome. To explain this, we observe that insofar as
translocations do not interfere, the evolution of the genomes takes place as if each
chromosome was evolving independently on is own. But from (10), we could then
expect about 1

2 log(1
2 + 270/40) ∼ 1 cycle per chromosome or 20 for the whole

genome. Were the last five translocations removed from our simulation, we could
expect almost that increase in the number of cycles, remembering of course, that
with only 405 operations, we are still far from a complete randomization.

8 Discussion

We have continued the development of probabilistic models of random genomes,
with a few to testing the statistical significance of genome rearrangement in-
ferences. Here, we have focused on the breakpoint graphs of multichromosomal
genomes and found that the expectation of the distance between two random
genomes, based on equation (5), is n + χ − 1

2 log n+χ
2χ − 3

2χ.
A problem remains in the log 2 discrepancy in equation (6). This may be

dues to the approximate nature of the model or, more likely, to the premature
conversion of the problem to a continuous analog.

We have suggested a new problem, how to construct breakpoint graphs reflect-
ing differential rates of inversion and translocation. Our simulation show that the
graphs are sensitive to this differential and so analytical work on this problem
is important to the eventual utility of our approach in testing the significance of
rearrangement inferences.
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Abstract. The common intervals of two permutations on n elements
are the subsets of terms contiguous in both permutations. They con-
stitute the most basic representation of conserved local order. We use
d, the size of the symmetric difference (the complement of the common
intervals) of the two subsets of 2{1,··· ,n} thus determined by two permu-
tations, as an evolutionary distance between the gene orders represented
by the permutations. We consider the Steiner Tree problem in the space
(2{1,··· ,n}, d) as the basis for constructing phylogenetic trees, including
ancestral gene orders. We extend this to genomes with unequal gene con-
tent and to genomes containing gene families. Applied to streptophyte
phylogeny, our method does not support the positioning of the complex
algae Charales as a sister group to the land plants.

1 Introduction

Phylogenetics based on gene order has used two types of objective functions for
optimizing the inferred ancestral nodes. One is based on breakpoints, or non-
conserved adjacencies in the gene orders of two genomes, dating from 1997 [15]
and related to the quantitative pre-genomics literature on conserved segments
[12]. The second is based on the number of inversions or other genome rearrange-
ments intervening between two genomes [18,7,19,6].

The scope of a genome rearrangement operation may be unrestricted across
the genome; a breakpoint is a very local structure. To emphasize local similarities
spanning regions larger than a single breakpoint within a rearrangement analy-
sis, Bergeron and colleagues have integrated more general notions of conserved
intervals and common intervals with rearrangements [3,4]. Further, they used
these integrated concepts in phylogeny, including the reconstruction of ancestral
gene orders [1,2].

In this paper we put even more importance on common intervals, basing a
phylogenetic reconstruction method solely on them. This analysis is model-free,
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in the sense that it dispenses completely with assumptions or considerations,
probabilistic or combinatorial, about specific processes involved in rearranging
genomes. The objective function we will optimize is simply the sum over the tree
branches of the symmetric difference between the two sets of intervals associated
with the genomes at the two ends of the branch. The motivation is simply that
the more related two genomes are, the more common intervals they will have,
while as evolutionary distance increases, more and more intervals from each will
be lacking from the other.

Optimizing a tree on the space of subsets of the power set of {1, · · · , n} using
dynamic programming [8,9,17] is easy; the set of intervals representing a genome,
however, is constrained to be compatible with a permutation. We do not know
the complexity of optimizing the ancestral nodes of a tree under this constraint,
but conjecture that it is hard. Thus we model our optimization heuristic after
the unconstrained case, and add the constraint in the traceback of the algorithm,
where a greedy procedure is used to test the addition of possibly conflicting inter-
vals to the subset of intervals representing a genome, represented by a PQ-tree.

Our methods carry over directly to the case where some or all genomes do
not contain the full set of genes. All we require is a preliminary assignment of
genes to ancestral nodes, rapidly achieved by dynamic programming, and an
adjustment of a test for identity of two intervals to be restricted to the reduced
intervals containing only the genes in common in the two genomes. The same
sort of extension of the model works when duplicate genes and gene families are
allowed, but only under certain conditions; the general case will require further
work.

We apply our method to the controversial questions of streptophyte phylogeny
and recover results comparable to previous work on both gene order phylogeny
and DNA sequence-based phylogeny.

2 Notation and Definitions

For a permutation Π on (1, · · · , n), we write Π = (π(1), · · · , π(n)). Let S =
{Π1, · · · , ΠN} be a set of such permutations. For each Π , the interval set de-
termined by π(h) and π(k), for 1 ≤ h < k ≤ n, is {π(h), π(h + 1), · · · , π(k)}.
For each J = 1, · · · , N , let IJ ⊂ 2{1,··· ,n} be the

(
n
2

)
interval sets of 2{1,··· ,n}

determined by ΠJ . We define the projection B(ΠJ ) = IJ . The set of common
intervals of ΠJ and ΠK is B(ΠJ ) ∩ B(ΠK) = IJ ∩ IK , the intersection of the(
n
2

)
interval sets defined by ΠJ and those defined by ΠK .

Let X ⊆ IJ and Y ⊆ IK . We say X is compatible with B(ΠJ ) and Y is
compatible with B(ΠK) and define the metric

d(X, Y ) = |X ∪ Y \ X ∩ Y |
= |X | + |Y | − 2|X ∩ Y |. (1)

In particular,

1
2
d(IJ , IK) =

(
n

2

)
− |IJ ∩ IK |. (2)
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Note that not all subsets of 2{1,··· ,n} are permutation-compatible, i.e., are subsets
of B(Π) for some permutation Π. E.g., {{1, 2}, {2, 3}, {2, 4}} is not permutation-
compatible. For any permutation-compatible X , we define B−1(X) to be the set
of permutations Π for which X ⊆ B(Π).

3 The Steiner Tree Problem for Common Intervals

The Steiner tree problem with input S is to find a tree graph T = (V, E),
where the vertices in V are permutation-compatible subsets of 2{1,··· ,n} and
{B(Π)}Π∈S ⊆ V such that the tree length

L(T ) =
∑

XY ∈E

d(X, Y ) (3)

is minimal.
In a Steiner tree, we can distinguish two types of vertex in V , terminal vertices,

i.e., of degree 1, which are all projections of permutations in S, and non-terminal,
or “ancestral”, vertices, some or all of which, the “unknown vertices” may be
projections of permutations not in S or other permutation-compatible subsets of
2{1,··· ,n}. We require that unknown vertices have degree 3 or more, a condition
which, by the metric property, does not affect the minimal value of L in (3).

The search for the Steiner tree is often divided into two problems, the inner, or
“small”, problem, and the outer, or “big”, problem. The big problem is essentially
a search through the set of all trees satisfying the above description. For each
tree examined during this search, the small problem is to optimally identify each
of the unknown vertices in V as the projection of some permutation on (1, · · · , n)
or some other permutation-compatible subset of 2{1,··· ,n}.

4 The General Dynamic Programming Solution for the
Small Problem

A general method for the small problem, i.e., for optimizing the position of the
ancestral nodes of a tree in a metric space was given in [17].

Condition 1. It suffices to consider trees where there is a path between any
two unknown vertices not passing through a vertex in S; othewise the problem
decomposes into subproblems an obvious way.

The solution requires choosing, arbitrarily, one of the unknown vertices r as the
“root”, and directing all edges in E away from the root. We write v → u for
an edge directed from ancestor v to “daughter” u. For any given position of the
ancestral vertices, let

l(v) =
∑
v→u

l(u) + d(u, v), (4)



66 Z. Adam et al.

with initial condition l(v) = 0 if v is a terminal vertex. Note that the tree
structure and Condition 1 ensure that recurrence (4) determines l(v) for all non-
terminal vertices. Then for any tree T with specified positions of the ancestral
vertices we may rewrite (3) as

L(T ) = l(r). (5)

For a Steiner tree, for a given position of v, we obtain from (4)

l(v) =
∑
v→u

min
u

[l(u) + d(u, v)]. (6)

If all the minimizing u are stored at each application of (6), then a Steiner tree
T may be recovered by tracing back the recurrence from the root to the terminal
nodes.

Depending on the metric space, the minimizing u in (6) may be more or
less difficult to calculate. Such is the case that interests us here, where the
vertices are projections of permutations, and the search for optimizing u is not
straightforward. However, we can easily solve a closely related problem, which
provides a lower bound on L(T ) and suggests how to solve the problem on
permutations.

5 Embedding the Small Problem for Permutations in a
Larger Space

For a given S consider the Steiner tree problem with input {B(Π1), · · · , B(ΠN )}
in the metric space (Mn, d), where Mn = 22{1,··· ,n}

, the set of all subsets of the
power set of {1, · · · , n}, and d is as before.

The set Mn is larger than Pn, the set of all permutation-compatible subsets
of 2{1,··· ,n}, in that there are elements of X ∈ Mn which are not of the form
X ⊆ B(Π) for any permutation Π .

Example 1. Let X = {{1, 2}, {1, 3}, {1, 4}}. Then there is no permutation Π
for which X ⊆ B(Π) for any permutation Π .

Then the solution to the Steiner tree problem in (Mn, d) is a lower bound to the
solution of the problem in (Pn, d).

The Steiner tree problem in (Pn, d) is harder than in (Mn, d) because the
intervals sets of a permutation, or sets compatible with a permutation, are highly
constrained, whereas in (Mn, d) it suffices to treat each subset of {1, · · · , n}
separately. To see this, note that the symmetric difference between two points
X, Y ∈ Mn may be written

d(X, Y ) =
∑

σ⊂{1,··· ,n}
|χσ(X) − χσ(Y )|, (7)
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where χσ is the indicator function of σ. Then, writing X(v) for the element of
Mn associated with vertex v of a tree, the length of any tree T satisfies

L(T ) =
∑

uv∈E

d(X(u), X(v)) (8)

=
∑

uv∈E

∑
σ⊂{1,··· ,n}

|χσ(X(u)) − χσ(X(v))| (9)

=
∑

σ⊂{1,··· ,n}

∑
uv∈E

|χσ(X(u)) − χσ(X(v))| (10)

so that the minimization of L(T ) may be done component-wise, i.e., separately
for each σ ⊂ {1, · · · , n}. In Section 6 then, we will discuss only whether or
not each ancestral vertex contains σ or not, which can be phrased as the tree
optimization problem for a single zero-one character.

6 The Small Problem for a Single Zero-One Variable

Consider that the data at each terminal vertex consist of either a zero or a
one, representing the presence or absence of a set σ. Dynamic programming
for ancestral node optimization requires two passes. In the forward pass, from
the terminal nodes towards the root, the value of the variable (the presence or
absence of σ) may be established definitely at some ancestral vertices, while at
other vertices it is left unresolved until the second, “traceback” pass, when any
multiple solutions are also identified.

Suppose ancestral vertex v has p daughter vertices u1, · · · , up, where p ≥ 2.
(If v �= r, then v has has degree p + 1, if v = r, then v has degree p ≥ 3.) In
practice, it usually suffices to allow only p = 2 for ancestral vertices and p = 3
for the root (binary trees), and indeed our algorithm is programmed for this
case. Nevertheless, in this section we will give the general solution, which may
be required in some contexts, and is of mathematical interest in any case. In the
next section we will discuss the simplification to binary trees.

Suppose for each daughter ui, we have already decided whether σ ∈ ui defi-
nitely, possibly, or definitely not. Let

q(σ) = #{i|σ ∈ ui definitely} (11)
Q(σ) = #{i|σ ∈ ui definitely or possibly}. (12)

If v �= r and q(σ) ≥ p
2 + 1, then σ ∈ v definitely. This is true because then∑

v→u

|χσ(u) − χσ(v)| ≤ p

2
− 1 (13)

whereas if σ were not in v,∑
v→u

|χσ(u) − χσ(v)| ≥ p

2
+ 1 (14)
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which is clearly not optimal, no matter whether σ is in the ancestor of v or not.
On the other hand, if v �= r and Q(σ) ≤ p

2 − 1, then definitely σ /∈ v. This is
true because then ∑

v→u

|χσ(u) − χσ(v)| ≤ p

2
− 1 (15)

whereas if σ were in v, ∑
v→u

|χσ(u) − χσ(v)| ≥ p

2
+ 1 (16)

which is clearly not optimal, no matter whether σ is in the ancestor of v or not.
This leaves the cases where both

q(σ) <
p

2
+ 1 (17)

Q(σ) >
p

2
− 1, (18)

where we say σ ∈ v possibly.
As for r, if q(σ) > p

2 , then σ ∈ r definitely; if Q(σ) < p
2 , then σ /∈ r definitely;

otherwise σ ∈ r possibly.
While applying the traceback of the recurrence, we reassign the “possible”

memberships in ancestral vertices either to definite memberships or to definite
exclusions. For ancestral vertex v, whether or not σ ∈ t, the ancestor of v,
has no bearing if σ ∈ v definitely or σ /∈ v definitely. Otherwise, if σ ∈ t and
1+ q(σ) > p+1

2 , then we reassign σ ∈ v definitely. If σ /∈ t and Q(σ) < p+1
2 , then

we reassign σ /∈ v definitely.
In the remaining cases if σ ∈ t and 1+ q(σ) ≤ p+1

2 ≤ 1+Q(σ), or if σ /∈ t and
Q(σ) ≥ p+1

2 ≥ q(σ), then we can assign or exclude σ from v, without affecting
L(T ). Note that if σ ∈ r possibly, we are also free to assign it to r or not at the
beginning of the traceback.

Note that while the dynamic programming can find a solution in time linear
in N , the number of different solutions may be exponential in N . Considering
all possible sets σ, the number of solutions is also exponential in n.

7 Binary Trees

The case of binary branching trees, where p + 1 ≡ 3 except at the root where
p = 3, is somewhat simpler in the traceback as there is at most one free choice
of assignment, and that is at r. For any other ancestral vertex v, membership or
not of σ in t, the ancestor of v, always determines its membership, or not, in v.

Moreover, for the big phylogeny problem, it suffices to search for the optimal
binary tree. If the optimal tree is not binary, this will still show up as a binary
tree with one or more edges of length d = 0.

Nevertheless, even for the small problem, because of the possible choice at r,
when we consider all σ, the number of solutions may be exponential in n.
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8 Handling Incompatible Subsets in Pn with PQ-Trees

In the case of binary trees, after the forward pass of the dynamic programming,
those σ for which q(σ) = 2 at any ancestral vertex v must all be in B(Π) for
some permutation Π , namely any terminal vertex permutation Π for which v is
an ancestor. In the case of r, those σ for which q = 3 must be in the interval sets
of all the terminal vertex permutations in S. In this special case, the solution in
(Mn, d) is also a solution for (Pn, d).

In general, however, this is not the case. In the following example the Steiner
tree in Mn is shorter than that in Pn.

Example 2. Let S = {(4, 1, 2, 3), (2, 1, 3, 4), (3, 1, 4, 2)}, and suppose T has a
single ancestor r.

Then in Mn, we calculate
q({1, 2}) = q({1, 3}) = q({1, 4}) = 2,
q({1, 2, 3}) = q({1, 3, 4}) = q({1, 4, 2}) = 2,
q({2, 3, 4}) = 0,
q({2, 3}) = q({3, 4}) = q({4, 2}) = 1,
so that the only proper subsets in r are {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 3, 4},
{1, 4, 2}. Each of the terminal vertices is missing two of these subsets but contains
one that is not in r, so that

∑
d = 3 × (2 + 1) = 9.

In Pn, there are multiple solutions to optimizing r, including the permuta-
tions (4, 1, 2, 3), (2, 1, 3, 4) or (3, 1, 4, 2) themselves. Each one of the latter shares
only two interval sets with each other, so that

∑
d = 12. Thus the difficulty

with working in Pn is the requirement that the set of subsets at an ancestral
vertex has to correspond to a permutation, or at least be compatible with some
permutation, while this restriction does not apply in Mn.

There is a data structure particularly well-suited for representing a set of
subsets compatible with a permutation, namely the PQ-tree [5]. A PQ-tree is
just a rooted tree with terminal vertices 1, · · · , n, where the daughter vertices
of some special non-terminal vertices may be “ordered”, though the left-right
or right-left direction of the order is not specified. For an ordered vertex x, the
blocks of terms spanned by the various daughters of x must be in the same order
for any permutation compatible with the tree, while there is no such constraint
on the vertices which are not ordered.

Given a PQ-tree and a new subset X , it is possible to rapidly check whether
X is compatible with the other subsets previously used to build the PQ-tree and
to update the PQ-tree to include the additional ordering information, if any, in
X . PQ-trees have already been utilized in gene order phylogenetics [2,14].

To ensure optimality in our procedure, we would have to interpret u and v in
recurrence (6) as PQ-trees. The difficulty would be to carry out the minimization
over all possible u1, · · · , up, i.e., to find a constraint limiting the set of possible
PQ-trees for u that could be in a solution if a given PQ-tree for v is. This is a
problem even for binary trees; the search space of all possible pairs of PQ-trees
cannot be reduced to a very limited set as we did in Equation (10) and Section
6. The actual calculation of the symmetric difference induced by two PQ-trees
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is not time-consuming. One approach to this problem might be found in the
concept of PQR-trees [11,21], which could include a limited number of intervals
incompatible with one of the two descendants of v, but we have not explored
this.

Instead, we proceed heuristically, constructing a PQ-tree at each vertex only
during the traceback. This is motivated by the observation in our test data, that
in the traceback it is rare for the following configuration to occur:

– t is the ancestor of v, and v is the ancestor of u1 and u2.
– σ1 and σ2 are both definitely in the PQ-tree at t, after the traceback step at

t.
– σi is in uj only for i = j but not for i �= j, before the traceback.
– either one of σ1 and σ2 can be added to PQ-tree defined by the pre-traceback

definites at t, but not both.

If this never happens, then we can be sure our result is optimal. If it does happen,
we assign as many such σ to the definites of v as possible, using a greedy approach
with larger intervals tried before smaller intervals.

9 Unequal Gene Complements

Doing gene order phylogeny on realistic sets of genomes which contain different
sets of genes is recognized as a substantially more difficult than the case with
identical gene sets in all species [16,20].

There is a natural solution within our framework. There are two steps to this
solution.

First, the presence or absence of each gene at each vertex is determined by
dynamic programming to minimize the number of gene deletions or insertions
across all edges of the tree. This is done gene-by-gene, analogous to the set-by-set
procedure in Section 5.

Second, in our main algorithm, when the definites for a vertex v are being
decided in the recurrence step, any interval σ in one of its descendants u1 con-
taining a gene g absent from the other genome u2 is assigned to be a definite of
v if σ\{g} is present in u2. This includes the case where σ = {g, h} and gene h
has previously been decided to be present in u2.

In building the PQ-tree for u2 during the traceback, if σ is definite for v, and
σ\{g} is a possible for u2, then it is a candidate for inclusion in the PQ-tree.
In calculating the symmetric difference between the sets of intervals from two
genomes, we first delete from consideration any gene that is not present in both
genomes, and remove any null sets or duplicate sets.

It can be shown that this generalizes the minimization of the sum of symmetric
differences across the tree, given the correctness of our dynamic programming
solution for gene presence or absence at ancestral vertices. In particular, in the
case of identical gene complements, it reduces to our original method.
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10 Duplicate Genes

The introduction of gene duplicates and gene families into genome comparisons
causes even more difficulty than unequal gene complements. This either calls for
changing the analytical framework from comparing permutations to comparing
strings, or integrating gene-tree/species-tree methodology into our procedures,
or both. The method proposed in this paper, however, formally applies directly
to data containing occasional duplicate genes. The construction and comparison
of sets of intervals is not complicated by duplicates, except that some convention
must be adopted for intervals containing two or more copies of the same gene,
i.e., only include one copy per interval or all copies, requiring the same number
of copies for identity of two intervals. We did not encounter this problem with
our test data, so we have not yet explored it further.

11 Application to Chloroplast Genomes

New sequences of the chloroplast genome allow the exploration of the evolution
of the streptophytes, a phylum containing several classes of algae but also the fa-
miliar multicellular land plants. Our data includes gene orders from Mesostigma
viride [10], Chlorokybus atmophyticus [unpublished data], Staurastrum punctu-
latum [23], Zygnema circumcarinatum [23], Chaetosphaeridium globosum [22],
Chara vulgaris [24], as well as the land plant Marchantia polymorpha [13], with
120-140 genes per genome. The first six of these represent five of the six major
charophycean (i.e., other than land plants) lineages.

We use the complete gene order of these genomes, including duplicate genes
and genes not present in some organisms. There are 148 distinct genes, 35 of
which were absent from one or more of the genomes. Five of the genomes had
six or eight duplicated genes, largely the same ones in each, while the remaining
two genomes had one or zero duplications, respectively.

Mesostigma viride

Chlorokybus atmophyticus

Zygnema circumcarinatum

Staurastrum punctulatum

Chara vulgaris

Chaetosphaeridium globosum

Marchantia polymorpha

Fig. 1. Best tree for six algae and the land plants. Rooting and branch lengths arbitrary.
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There has been some controversy among phycologists about the origin of land
plants, in particular whether they represent a sister grouping to the Charales,
represented here by Chara vulgaris or a sister grouping to the Coleochaetales,
represented here by Chaetosphaeridium globosum. The best tree we obtained is
depicted in Figure 1. We note the correct grouping together of the two Zygne-
matalean algae Staurastrum and Zygnema. The tree also correctly depicts the
early branching of Mesostigma and Chlorokybus, though it does not bear on the
controversy of whether Mesostigma is actually a streptophyte, or whether its ori-
gin predates that of the streptophytes in algal evolution. Of particular interest is
the grouping of Marchantia with Chaetosphaeridium instead of with Chara. Pre-
vious analysis of the same genomes, at both the sequence and gene-order levels,
suggested that Chara branches early and that the Zygnematale-Coleochaetale
lineages group with the land plants [24]. The early branching of the Zygne-
matales was seen to be a much less parsimonious solution. Nevertheless, the
results in Figure 1 represent an additional line of evidence in the still unsettled
problem of streptophyte phylogeny.

12 Implementation

Our current implementation of the method includes an exhaustive search of
binary trees only for the “big” problem, plus heuristics when N is larger than 9
or 10. The algorithm for the “small” problem is also the binary tree version. We
have tested it for values of n in the range of 100-200. The PQ-tree construction
notifies when a conflict is detected and resolved, and the pre-calculation of gene
content of ancestral nodes is also implemented. The ability to handle duplicate
genes is inherent in the algorithm and requires no special consideration. The
experimental version of our program will be made available on our lab website.

13 Conclusions

We have proposed and implemented a new method based on common intervals
of two or more genomes for constructing a phylogenetic tree. This has the advan-
tage (or disadvantage!) of being independent of any particular model of genome
rearrangement or rearrangement weighting. A maximum of emphasis is laid on
the commonality of gene order at the local level, the objective function for the
tree being merely the sum, over all the tree branches, of the symmetric difference
between the two sets of intervals associated with the genomes at the two ends
of the branch.

We have only begun to explore the algorithmic possibilities in this approach.
The use of PQR-trees during the recurrence part of the algorithm might allow
for a global and efficient optimum in the general case. Failing that, more so-
phisticated heuristics are certainly available for the construction of PQ-trees at
ancestral vertices during the traceback.

One issue we have not examined is the interpretation of branch length. The
number of intervals at terminal vertex is O(n2), but in our test data the number
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of intervals at ancestral vertices is typically O(n), so that terminal branches
would appear unduly distant from the cluster of ancestral vertices, were the
untransformed symmetric distance considered meaningful as a clocklike measure
of evolution.

Note that this paper deals only with unsigned genomic data. There is no
particularly natural way to extend it to signed genomes, except of course to
simply drop the sign. Our approach, however, does seem particularly well-suited
to situations with gene families, and even to string, instead of permutation,
representations of genomes.
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Abstract. Computing genomic distances between whole genomes is a
fundamental problem in comparative genomics. Recent researches have
resulted in different genomic distance definitions: number of breakpoints,
number of common intervals, number of conserved intervals, Maximum
Adjacency Disruption number (MAD), etc. Unfortunately, it turns out
that, in presence of duplications, most problems are NP–hard, and hence
several heuristics have been recently proposed. However, while it is rel-
atively easy to compare heuristics between them, until now very little is
known about the absolute accuracy of these heuristics. Therefore, there
is a great need for algorithmic approaches that compute exact solutions
for these genomic distances. In this paper, we present a novel generic
pseudo-boolean approach for computing the exact genomic distance be-
tween two whole genomes in presence of duplications, and put strong
emphasis on common intervals under the maximum matching model. Of
particular importance, we show very strong evidence that the simple LCS
heuristic provides very good results on a well-known public benchmark
dataset of γ-Proteobacteria.

Keywords: pseudo-boolean programming, genome rearrangement, com-
mon intervals, duplication, heuristic.

1 Introduction

Due to the increasing amount of completely sequenced genomes, the comparison
of gene order to find conserved gene clusters is becoming a standard approach
in comparative genomics. A natural way to compare species is to compare their
whole genomes, where comparing two genomes is very often realized by deter-
mining a measure of similarity (or dissimilarity) between them.

Several similarity (or dissimilarity) measures between two whole genomes have
been recently proposed, such as the number of breakpoints [12,6,2], the number
of reversals [6,9], the number of conserved intervals [4], the number of common
intervals [5], the Maximum Adjacency Disruption Number (MAD) [13], etc. How-
ever, in the presence of duplications and for each of the above measures, one has

G. Bourque and N. El-Mabrouk (Eds.): RECOMB-CG 2006, LNBI 4205, pp. 75–86, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



76 S. Angibaud et al.

first to disambiguate the data by inferring homologs, i.e., a non-ambiguous map-
ping between the genes of the two genomes. Up to now, two extremal approaches
have been considered : the exemplar model and the maximum matching model.
In the exemplar model [12], for all gene families, all but one occurrence in each
genome is deleted. In the maximum matching model [2,8], the goal is to map
as many genes as possible. These two models can be considered as the extremal
cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned mea-
sures, whatever the considered model (exemplar or matching), the problem be-
comes NP–complete as soon as duplicates are present in genomes [6,2,4,8]; a
few inapproximability results are known for some special cases. Therefore, sev-
eral heuristic methods have been recently devised to obtain (hopefully) good
solutions in a reasonable amount of time [3,5]. However, while it is relatively
easy to compare heuristics between them, until now very little is known about
the absolute accuracy of these heuristics. Therefore, there is a great need for al-
gorithmic approaches that compute exact solutions for these genomic distances.

In the present paper, we introduce a novel generic pseudo-boolean program-
ming approach for computing exact solutions. In this first attempt, we focus on
the problem of finding the maximum number of common intervals between two
genomes under the maximum matching model. For one, from a computational
point of view, this problem (together with MAD) is one of the hardest in our
pseudo-boolean framework. For another, this allows us to present with a single
example the main idea of our approach: a pseudo-boolean program together with
reduction rules. Our approach is in fact more ambitious. Our long term goal is
indeed to develop a generic pseudo-boolean approach for the exact computa-
tion of various genome distances (number of breakpoints, number of common
intervals, number of conserved intervals, MAD, etc.) under both the exemplar
and the maximum matching models, and use this generic approach on different
datasets. The rationale of this approach is threefold:

1. There is a crucial need for new algorithmic solutions providing exact genome
distances under both the exemplar and the maximum matching model in or-
der to estimate the accuracy of existing heuristics and to design new efficient
biologically relevant heuristics.

2. Very little is known about the relations between the various genome distances
that have been defined so far (number of breakpoints, number of common
intervals, number of conserved intervals, MAD, etc.). We thus propose to
extensively compared all these genome distances under both models with a
generic pseudo-boolean framework on several datasets.

3. We also plan to further investigate the relations between the exemplar and
the maximum matching models. We strongly believe here that, in the light
of these comparisons, some biologically relevant intermediate model between
these two extrema could be defined.

This paper is organized as follows. In Section 2, we present some preliminaries
and definitions. We focus in Section 3 on the problem of finding the maximum
number of common intervals under the maximum matching model and give a
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pseudo-boolean programming approach together with some reduction rules. Sec-
tion 4 is devoted to experimental results on a dataset of γ-Proteobacteria. Of
particular importance, we show strong evidence that the simple LCS heuristic
provides very good results on our dataset.

2 Preliminaries

Genomes with duplications are usually represented by signed sequences over the
alphabet of gene families, where every element in a genome is a gene. However,
in order to simplify notations, and since common intervals do not depend on the
sign given to the genes, we will consider only unsigned genomes. Any gene belongs
to a gene family, and two genes belong to the same gene family if they have the
same label, regardless of the sign. In the sequel, we will be extensively concerned
with pairs of genomes. Let G1 and G2 be two genomes, and let a ∈ {0, 1}. The
number of genes in genome Ga is always written na. We denote the i-th gene
of genome Ga by Ga[i]. For any 1 ≤ i ≤ j ≤ na, we write Ga(i, j) for the set
{Ga[i], Ga[i + 1], . . . , Ga[j]} and we let Ga stand for Ga(1, na). In other words,
Ga(i, j) is the set of all distinct genes between positions i and j in genome Ga,
while Ga is the set of all distinct genes in the whole genome Ga. For any gene
g ∈ Ga and any 1 ≤ i ≤ j ≤ na, we denote by occa(g, i, j) the number of
occurrences of gene g in the sequence (Ga[i], Ga[i + 1], . . . , Ga[j]). To simplify
notations, we abbreviate occa(g, 1, na) to occa(g).

A matching M between genomes G1 and G2 is a set of pairwise disjoint
pairs (G1[i], G2[j]), where G1[i] and G2[j] belong to the same gene family, i.e.,
G1[i] = G2[j]. Genes of G1 and G2 that do not belong to any pair of the matching
M are said to be unmatched for M. A matching M between G1 and G2 is said
to be maximum if for any gene family, there are no two genes of this family that
are unmatched for M and belong to G1 and G2, respectively. A matching M
between G1 and G2 can be seen as a way to describe a putative assignment of
orthologous pairs of genes between G1 and G2 (see for example [9]).

Let M be any matching between G1 and G2. By first deleting unmatched
genes and next renaming genes in G1 and G2 according to the matching M, we
may now assume that both G1 and G2 are duplication free, i.e., G2 is a permu-
tation of G1. A common interval between G1 and G2 is a substring of G1, i.e.,
a sequence of consecutive genes of G1, for which the exact same content can be
found in a substring of G2. It is easily seen that, by first resorting to a renaming
procedure, we can always assume that one of the two genomes, say G1, is the
identity permutation, i.e., G1 = 1 2 . . . n1. For example, let G = 1 2 3 4 5 and
G2 = 1 5 3 4 2 then the interval [3 : 5] of G1 is a common interval (because 5 3 4
occurs as a substring in G2). Notice that there exist at least n+1 (n = n1 = n2)
common intervals between G1 and G2 since each individual gene is always a
common interval and G1 itself is also a common interval. This lower bound is
tight as shown by G1 = 1 2 3 4 and G2 = 2 4 1 3. Furthermore, if G1 = G2 the
number of common intervals between G1 and G2 is n(n+1)

2 , where n = n1 = n2,
i.e., each possible substring of G1 is a common interval.
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3 An Exact Algorithm for Maximizing the Number of
Common Intervals

3.1 Pseudo-boolean Models

A Linear Pseudo-boolean (LPB) program is a linear program [14] where all
variables are restricted to take values of either 0 or 1. For one, LPB programs
are viewed by the linear programming community as just a domain restriction
on general linear programming. For another, from a satisfiability (Sat) point
of view, pseudo-boolean constraints can be seen as a generalization of clauses
providing a significant extension of purely propositional constraints [7,10].

Conventionally, LPB problems are handled by generic Integer Linear Pro-
gramming (ILP) solvers. The drawback of such an approach is that generic ILP
solvers typically ignore the boolean nature of the variables. Alternatively, LPB
decision problems could be encoded as Sat instances in pure CNF (Conjunctive
Normal Form), i.e., conjunction of disjunctions of boolean literals, which are
then solved by any of the highly specialized Sat approaches. However the num-
ber of clauses required for expressing the LPB constraints is prohibitively large.
Moreover a pure CNF encoding may prevent the solver from pruning the search
space effectively [7]. Boolean satisfiability solvers available today are the result of
decades of research and are deemed to be among the faster NP–complete prob-
lem specific solvers. The latest generation of Sat solver generally have three
key features (randomization of variable selection, backtracking search and some
form of clause learning) and usually run in reasonable time (even for very large
instances).

A number of generalizations of Sat solvers to LPB solvers have been proposed
(Pueblo [15], Galena [7], OPBDP [1] and more). We decided to use for our tests
the minisat+ LPB solver [10] because of its good results during PB evaluation
2005 (special track of the Sat Competition 2005).

3.2 Common Intervals

We propose in Figure 1 a pseudo-boolean program for computing the maximum
number of common intervals between two genomes under the maximum matching
model in the presence of duplications (we assume here that each gene g ∈ G1∪G2
occurs both in G1 and in G2).

Program Common-Intervals-Matching is clearly a pseudo-boolean program,
i.e., a (0, 1)-linear program. Roughly speaking, the boolean variables are divided
in two sets: true setting of variables in C denote possible common intervals
between G1 and G2, while true setting of variables in X denote the mapping,
i.e., matching, between G1 and G2. We now turn to describing the constraints.
Constraints in (C.01) and in (C.02) deal with consistency of the mapping: each
gene of G1 is mapped to at most one gene of G2, and conversely (some genes
need indeed to be deleted in case of unbalanced families). Constraints in (C.03)
ensure that each common interval is counted exactly once. The key idea here is
to impose an “active border” property, i.e., if variable ci,j

k,
 is set to 1 then genes
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Program Common-Intervals-Matching

objective:

maximize
�

c
i,j
k,�

∈A

ci,j
k,�

variables:

C = {ci,j
k,� : 1 ≤ i ≤ j ≤ n1 ∧ 1 ≤ k ≤ 	 ≤ n2}

X = {xi
k : 1 ≤ i ≤ n1 ∧ 1 ≤ k ≤ n2 ∧ G1[i] = G2[k]}

subject to:

(C.01) ∀i = 1, 2, . . . , n1,
�

1≤k≤n2
G1[i]=G2[k]

xi
k ≤ 1

(C.02) ∀k = 1, 2, . . . , n2,
�

1≤i≤n1
G1[i]=G2[k]

xi
k ≤ 1

(C.03) ∀ci,j
k,� ∈ C, 4 ci,j

k,� −
�

k≤r≤�

G1[i]=G2[r]

xi
r −

�

k≤s≤�

G1[j]=G2[s]

xj
s −

�

i≤p≤j

G1[p]=G2[k]

xp
k −

�

i≤q≤j

G1[q]=G2[�]

xq
� ≤ 0

(C.04) ∀ci,j
k,� ∈ C, ∀i < p < j, ∀1 ≤ r < k, G1[p] = G2[r], ci,j

k,� + xp
r ≤ 1

(C.05) ∀ci,j
k,� ∈ C, ∀i < p < j, ∀	 < r ≤ n2, G1[p] = G2[r], ci,j

k,� + xp
r ≤ 1

(C.06) ∀ci,j
k,� ∈ C, ∀k < r < 	, ∀1 ≤ p < i, G1[p] = G2[r], ci,j

k,� + xp
r ≤ 1

(C.07) ∀ci,j
k,� ∈ C, ∀k < r < 	, ∀j < p ≤ n1, G1[p] = G2[r], ci,j

k,� + xp
r ≤ 1

(C.08) ∀g ∈ G1 ∪ G2,
�

1≤i≤n1
G1[i]=g

�

1≤k≤n2
G2[k]=g

xi
k = min{occ1(g), occ2(g)}

domains:

∀xi
k ∈ X, xi

k ∈ {0, 1}
∀ci,j

k,� ∈ C, ci,j
k,� ∈ {0, 1}

Fig. 1. Program Common-Intervals-Matching for finding the maximum number of
common intervals between two genomes under the maximum matching model

G1[i] and G1[j] must match some distinct genes between positions k and � in G2,
and genes G2[k] and G2[�] must match some distinct genes between positions i
and j in G1. Constraints in (C.04) to (C.07) ensure that if ci,j

k,
 = 1 then the
interval [i : j] of G1 and the interval [k : �] of G2 is a common interval according
to the mapping induced by the true setting of X . For example, constraints in
(C.04) ensure that each gene in the interval [i : j] of G1 is either not mapped
or is mapped to a gene in the interval [k : �] of G2 (thanks to constraints in
(C.01), (C.02) and (C.03), genes at position i and j in G1 are actually mapped
to distinct genes in G2 if i < j and ci,j

k
 = 1). Finally, constraints in (C.08) forces
the mapping to be a maximum matching between G1 and G2.

Proposition 1. Program Common-Intervals-Matching correctly computes the
maximum number of common intervals between G1 and G2 under the maximum
matching model.
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We briefly discuss here space issues of Program Common-Intervals-Matching.
First, it is easily seen that #C = Θ(n2

1 n2
2) and hence that (C.03) is composed

of Θ(n2
1 n2

2) constraints. The number of constraints in (C.04) to (C.07) how-
ever does depend on the number of duplications in the two genomes. Second,
#X = O(n1 n2). Clearly, the size of the set X determines the number of con-
straints in (C.01) and (C.02) and of course strongly depends on the number
of duplications in G1 and G2. Not surprisingly, the set X turns out to be of
moderate size in practice. Finally, the number of constraints in (C.07) is clearly
linear in the size of the two genomes. We shall soon describe (section 3.3) how
to speed-up the program by reducing the number of variables and constraints.

We observe that replacing constraints in (C.08) by a new set of constraints
(C.08’) – see below – in Program Common-Intervals-Matching results in the
pseudo-boolean program Common-Intervals-Exemplar that computes the max-
imum number of common intervals between genomes G1 and G2 under the ex-
emplar model.

(C.08’) ∀g ∈ G1 ∪ G2,
�

1≤i≤n1
G1[i]=g

�

1≤k≤n2
G2[k]=g

xi
k = 1

Interestingly enough, substituting now the constraints in (C.08) by a new set
of constraints (C.08’’) – see below – in Program Common-Intervals-Matching
results in a pseudo-boolean program that computes the maximum number of
common intervals between genomes G1 and G2 under the following intermediate
model: at least one gene in each gene family is mapped. Observe that this model
contains both the exemplar model and the maximum matching model as special
cases.

(C.08’’) ∀g ∈ G1 ∪ G2,
�

1≤i≤n1
G1[i]=g

�

1≤k≤n2
G2[k]=g

xi
k ≥ 1

3.3 Speeding-Up the Program

We give in this section four rules for speeding-up Program Common-Intervals-
Matching. In theory, a very large instance may be easy to solve and a small
instance hard. However, very often, small hard instances turn out be artificial,
e.g., the pigeonhole problem, and hence, in case of practical instances, the run-
ning time of a pseudo-boolean solver is most of the time related to the size of the
instances. The main idea here is thus to reduce the number of variables and con-
straints in the program (for ease of exposition we describe our rules as filters on
C). More precisely, we give rules that avoid introducing useless variables ci,j

k,
 in
C in such a way that the correctness of Program Common-Intervals-Matching
is maintained by repeated applications of the rules; two of these filters however
do modify the correct maximum number of common intervals between the two
genomes and thus ask for subsequent modifications in order to obtain the correct
solution.
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[Rule 1] Delete from C all variables ci,i
k,k, 1 ≤ i ≤ n1 and 1 ≤ k ≤ n2.

[Rule 1] does modify the correct number of common intervals between G1
and G2, and hence application of this rule asks for subsequent modifications of
the number of common intervals. The key idea of [Rule 1] is simply to discard
common intervals of size 1 from the program. Indeed, we can compute in a pre-
processing step the numbers d1 and d2 of genes that need to be deleted in G1 and
G2 for obtaining a maximum matching between the two genomes. Therefore, we
know that the resulting genomes will consist in L = n1 − d1 = n2 − d2 genes,
where

L =
∑
g∈G

min{occ1(g), occ2(g)}.

But each of these genes will contribute for 1 to the number of common intervals
between G1 and G2, for any maximum matching. We thus simply delete all
these variables and add L to the number of common intervals between G1 and
G2 found by Program Common-Intervals-Matching.

[Rule 2] Delete from C all variables ci,j
k,
 for which any of the following conditions

holds true:

1. (#{r : k ≤ r ≤ �∧G1[i] = G2[r]} = 0)∨(#{s : k ≤ s ≤ �∧G1[j] = G2[s]} = 0),
2. (#{r : k ≤ r ≤ � ∧ G1[i] = G2[r]} < 2) ∧ (G1[i] = G1[j]),
3. (#{p : i ≤ p ≤ j∧G2[k] = G1[p]} = 0)∨(#{q : i ≤ q ≤ j∧G2[�] = G1[q]} = 0),
4. (#{p : i ≤ p ≤ j ∧ G2[k] = G1[p]} < 2) ∧ (G2[k] = G2[�]).

[Rule 2] is a quickening for constraints in (C.03). Indeed, these constraints
ensure that each common interval is counted exactly once by the program by
forcing the border of each common interval to be active in the computed solution,
i.e., genes G1[i] and G1[j] match some distinct genes between positions k and �
in G2, and genes G2[k] and G2[�] match some distinct genes between positions
i and j in G1. Correctness of [Rule 2] thus follows from the fact that Program
Common-Intervals-Matching will always set a variable ci,j

k,
 to 0 if the border
property cannot be satisfied (it is assumed here that i < j and k < �).

[Rule 3] Delete from C all variables ci,j
k,
 for which there exists at least one gene

g ∈ G such that |occ1(g, i, j) − occ2(g, k, �)| > |occ1(g) − occ2(g)|.

Roughly speaking, [Rule 3] avoids us to kill too many genes in a common
interval. Indeed, for one, for any g ∈ G, |occ1(g, i, j)−occ2(g, k, �)| is clearly the
minimum number of occurrences of gene g that need to be deleted if ci,j

k,
 = 1,
i.e., [i : j] and [k : �] form a common interval between the two genomes. For
another, for any g ∈ G, |occ1(g) − occ2(g)| is the number of occurrences of gene
g that need to be deleted in G1 and G2 for finding any maximum matching
between the two genomes. Correctness of [Rule 3] thus follows from the fact
that we can certainly not delete more than |occ1(g) − occ2(g)| occurrences of
gene g.
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[Rule 4] Delete from C all variables ci,j
k,
 for which the four following conditions

hold true:

1. ∀g ∈ G1(i, j), #occ1(g, 1, i − 1) + #occ1(g, j + 1, n1) = 0,
2. ∀g ∈ G2(k, �), #occ2(g, 1, k − 1) + #occ2(g, � + 1, n2) = 0,
3. #occ1(G1[i]) ≤ #occ2(G1[i]) and #occ1(G1[j]) ≤ #occ2(G1[j]),
4. #occ2(G2[k]) ≤ #occ1(G2[k]) and #occ2(G2[�]) ≤ #occ1(G2[�]).

We first observe that [Rule 4] does modify the correct number of common
intervals between G1 and G2, and hence application of this rule asks for subse-
quent modifications of the number of common intervals. The rationale of [Rule
4] is that, if the four conditions hold true, then ci,j

k,
 will always be set to 1
by Program Common-Intervals-Matching. In other words, for any maximum
matching between G1 and G2, [i : j] and [k : �] will form a common intervals.
We thus simply delete from C all these variables ci,j

k,
 and add the number of
deleted variables by [Rule 4] to the number of common intervals between G1
and G2 found by Program Common-Intervals-Matching. This rule will prove
extremely useful for highly conserved regions with localized duplications.

4 Experimental Results

As mentioned earlier, the generic pseudo-boolean approach we propose in this
paper can be useful for estimating the accuracy of an heuristic. In that sense,
it is necessary to compute the exact results for different datasets, that could be
later used as benchmarks to which confront any given heuristic algorithm.

Computing exact results for different datasets and different (dis)similarity
measures is a long task, because the problem is NP–hard (see for instance
[6,2,8]), which implies that there is no guarantee that a computer (even a very
powerful one) will ever provide an exact result ; however, the main interest of
the pseudo-boolean approach is that, due to several decades of research intended
in speeding-up the computation process, this specific problem can be solved in
reasonable time, even for very large instances.

We started the computation of exact results concerning common intervals in
the maximum matching model by studying the dataset used in [3]. This dataset is
composed of 12 complete genomes from the 13 γ-Proteobacteria originally stud-
ied in [11]. The thirteenth genome (V.cholerae) has not been considered, since
it is composed of two chromosomes, and hence does not fit in the model we con-
sidered here for representing genomes. More precisely, this dataset is composed
of the genomes of the following species:

– Buchnera aphidicola APS (Genbank accession number NC 002528),
– Escherichia coli K12 (NC 000913),
– Haemophilus influenzae Rd (NC 000907),
– Pasteurella multocida Pm70 (NC 002663),
– Pseudomonas aeruginosa PA01 (NC 002516),
– Salmonella typhimurium LT2 (NC 003197),
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– Xanthomonas axonopodis pv. citri 306 (NC 003919),
– Xanthomonas campestris (NC 0 03902),
– Xylella fastidiosa 9a5c (NC 002488),
– Yersinia pestis CO 92 (NC 003143),
– Yersinia pestis KIM5 P12 (NC 004088) and
– Wigglesworthia glossinidia brevipalpis (NC 004344).

The computation of a partition of the complete set of genes into gene families,
where each family is supposed to represent a group of homologous genes, is taken
from [3].

The results we have obtained are given in Table 1. Out of the 66 possible
pairwise genome comparisons, 39 results have been obtained so far. Despite the
fact that the variant and the measure we study is one of the most time consuming
(as mentioned in Section 1), the results look promising, since more than half of
the results have been computed until now. Moreover, among those 39 values,
only 2 of them took several days to be computed, while the others took no more
than a few minutes.

Table 1. Number of common intervals in the maximum matching model: exact results
obtained by our pseudo-boolean transformation (39 out of 66)

Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92
Ecoli 2882
Haein 1109 2784
Paeru 1524 2036
Pmult 1224 3342 3936 2337
Salty 2849 2820 3376
Wglos 1275 2328 1085 1558 1214 2335
Xanon 1183 1471 1225
Xcamp 1183 1458 1223
Xfast 979 1877 1295 1981 994

Ypest-co92 2585 2694 3298 2318 1949
Ypest-kim 2141 2500 3092 2093 1891

In addition to being promising because they were obtained in a reasonable
amount of time, these results, though still partial, allow us to go further. In-
deed, they will allow us (i) to discuss the heuristic used in [3] (that we will
denote ILCS), (ii) to discuss an improvement we suggest for ILCS (that we will
denote IILCS), and (iii) to compare the results of IILCS to the exact results
we have obtained via our pseudo-boolean approach. We first start by describ-
ing the heuristic used in [3], that we will call ILCS (Iterative Longest Common
Substring). This heuristic is greedy, and works as follows:

1. Compute the Longest Common Substring (i.e., the longest contiguous word)
S of the two genomes, up to a complete reversal. If there are several candi-
dates, pick one arbitrarily

2. Match all the genes of S accordingly
3. Iterate the process until all possible genes have been matched (i.e., we have

obtained a maximum matching)
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4. Remove, in each genome, all the genes that have not been matched
5. Compute the number of common intervals that have been obtained in this

solution

The simple idea behind this heuristic algorithm is that an LCS (up to complete
reversal) of length k contains k(k+1)

2 common intervals. Hence, finding such exact
copies in both genomes intuitively helps to increase the total number of common
intervals. The results obtained by the heuristic ILCS in [3] are summarized in
Table 2. Since the results are not symmetric (i.e., running ILCS(G1, G2) on
genomes G1 and G2 does not necessarily produce the same number of common
intervals than running ILCS(G2, G1) on the same genomes taken in the other
order), we took, for each genome comparison, the best result.

Table 2. Number of common intervals in the maximum matching model: results ob-
tained by the ILCS heuristic from [3]

Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92
Ecoli 2605
Haein 1104 2758
Paeru 1494 3862 1981
Pmult 1219 3297 3901 2278
Salty 2641 65634 2794 3826 3327
Wglos 1267 2102 1078 1496 1204 2083
Xanon 1147 2485 1446 3788 1626 2613 1175
Xcamp 1153 2459 1441 3746 1603 2603 1168 106681
Xfast 975 1828 1285 2332 1457 1956 963 6797 6647

Ypest-co92 2414 13818 2668 3887 3237 15007 2037 2395 2358 1810
Ypest-kim 1943 13762 2460 3757 3027 14770 1846 2471 2446 1854 242963

A deeper study of the ILCS heuristic led us to suggest an improvement to it,
in the form of a new heuristic, that we call IILCS (Improved Iterative Longest
Common Substring). The only difference between IILCS and ILCS is that, be-
fore searching for a Longest Common Substring (up to a complete reversal), we
“tidy” the two genomes, in the sense that we remove, in each genome and at
each iteration, the genes for which we know they will not be matched in the final
solution (this is simply done by counting, at each iteration, the number of un-
matched genes of each gene family). This actually allows to possibly find longer
Longest Common Substrings at each iteration, and always gives better results
on the studied dataset (except in one case where the result is the same for both
heuristics, see Table 3). On average, over the 66 pairwise genome comparisons,
IILCS improves by 2.6% the number of common intervals that are found. The
results for IILCS are summarized in Table 3. Similarly to ILCS, the results are
not symmetric, thus we took, for each genome comparison, the best result.

The most interesting and surprising result, which we were able to point thanks
to our pseudo-boolean transformation and the exact results obtained from it, is
that heuristic IILCS appears to be very good on the dataset we studied. Indeed,
out of the 39 instances for which we have computed the exact results, IILCS
returns the optimal result in 7 cases, and returns a number of common intervals
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Table 3. Number of common intervals in the maximum matching model: results ob-
tained by the IILCS heuristic

Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92
Ecoli 2869
Haein 1109 2775
Paeru 1518 3976 2018
Pmult 1224 3329 3887 2321
Salty 2849 66025 2809 3956 3350
Wglos 1267 2186 1085 1508 1211 2274
Xanon 1183 2540 1468 3952 1644 2685 1198
Xcamp 1183 2524 1455 3898 1621 2675 1196 108347
Xfast 979 1849 1293 2365 1464 1974 973 6890 6732

Ypest-co92 2541 14364 2686 3989 3268 15192 2307 2482 2433 1816
Ypest-kim 2124 14126 2487 3859 3037 15451 2091 2557 2509 1863 261345

that is more than 99% of the optimal number for 18 other cases. The “worse”
result that IILCS provides is 93.17% away from the optimal (Ypest-co92/Xfast).
On average, over the 39 pairwise comparisons for which we have exact results,
IILCS performs very well, since it gives a number of common intervals that is
98.91% of the optimal number.

This result comes as a surprise, because, despite being extremely simple and
fast, IILCS appears to be very good on this dataset. Hence, this strongly sug-
gests that computing common intervals in the maximum matching model can
simply be undertaken using IILCS while remaining accurate, thus validating this
heuristic.

5 Conclusion

In this paper, we have introduced a novel and original method that helps speeding-
up computations of exact results for comparing whole genomes containing dupli-
cates. This method makes use of pseudo-boolean programming. Our approach is
very general, and can handle several (dis)similarity measures (breakpoints, com-
mon intervals, conserved intervals, MAD, etc.) under several possible models (ex-
emplar model, maximum matching model, but also most variants within those two
extrema). An example of such an approach (common intervals under the maxi-
mum matching model) has been developed, in order to illustrate the main ideas
of the pseudo-boolean transformation framework that we suggest. Experiments
have also been undertaken on a dataset of γ-Proteobacteria, showing the validity
of our approach, since already 39 results (out of 66) have been obtained in a limited
amount of time. Moreover, those preliminary results have allowed us to state that
the new IILCS heuristic provides excellent results on this dataset, hence show-
ing its validity and robustness. On the whole, those preliminary results are very
encouraging.

There is still a great amount of work to be done, and some of it is being
undertaken by the authors at the moment. Among other things, one can cite:

– Implementing and testing all the possible above mentioned variants, for all
the possible above mentioned (dis)similarity measures,



86 S. Angibaud et al.

– For each case, determine strong and relevant rules for speeding-up the process
by avoiding the generation of too many clauses and variables (a pre-processing
step that should not be underestimated),

– Obtaining exact results for each of those variants and measures, for different
datasets, that could be later used as benchmarks for validating (or not)
possible heuristics, but also the measures themselves, or even the models.
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Abstract. The understanding of genome rearrangements is an impor-
tant endeavor in comparative genomics. A major computational prob-
lem in this field is finding a shortest sequence of genome rearrangements
that “sorts” one genome into another. In this paper we focus on sorting
a multi-chromosomal genome by translocations. We reveal new relation-
ships between this problem and the well studied problem of sorting by
reversals. Based on these relationships, we develop two new algorithms
for sorting by translocations, which mimic known algorithms for sorting
by reversals: a score-based method building on Bergeron’s algorithm,
and a recursive procedure similar to the Berman-Hannenhalli method.
Though their proofs are more involved, our procedures for translocations
match the complexities of the original ones for reversals.

1 Introduction

For over a decade, much effort has been put into large-scale genome sequenc-
ing projects. Analysis of biological sequence data that have accumulated so far
showed that genome rearrangements play an important role in the evolution of
species. A major computational problem in the research of genome rearrange-
ments is finding a most parsimonious sequence of rearrangements that transforms
one genome into the other. This is called the genomic sorting problem, and the
corresponding number of rearrangements is called the genomic distance between
the two genomes. Genomic sorting gives rise to a spectrum of fascinating combi-
natorial problems, each defined by the set of allowed rearrangement operations
and by the representation of the genomes.

In this paper we focus on the problem of sorting by translocations. We reveal
new similarities between sorting by translocations and the well studied problem
of sorting by reversals. The study of the problem of sorting by translocations is
essential for the full comprehension of any genomic sorting problem that permits
translocations. Below we review the relevant previous results and summarize our
results. Formal definitions are provided on the next section.

Following the pioneering work by Nadeau and Taylor [11], reversals and translo-
cations are believed to be very common in the evolution of mammalian species.
Reversals (or inversions) reverse the order and the direction of transcription of the
genes in a segment inside a chromosome. Translocations exchange tails between
two chromosomes. A translocation is reciprocal if none of the exchanged tails is
empty. The genomic sorting problem restricted to reversals (respectively, recipro-
cal translocations) is referred to as SBR (respectively, SRT).

G. Bourque and N. El-Mabrouk (Eds.): RECOMB-CG 2006, LNBI 4205, pp. 87–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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SBR and SRT were both proven to be polynomial. Hannenhalli and Pevzner
[7] gave the first polynomial algorithm for SBR and since then other more effi-
cient algorithms and simplifications for the analysis have been presented. Berman
and Hannenhalli [4] presented a recursive algorithm for SBR. Kaplan, Shamir and
Tarjan [8] simplified the analysis and gave an O(n2) algorithm for SBR. Using a
linear time algorithm by Bader, Moret and Yan [1] for computing the reversal dis-
tance, the algorithm of Berman and Hannenhalli can be implemented in O(n2). A
score-based algorithm for SBR was presented by Bergeron [2]. Tannier, Bergeron
and Sagot [13] presented an elegant algorithm for SBR that can be implemented
in O(n3/2

√
log(n)) using a clever data structure by Kaplan and Verbin [9].

SRT was first introduced by Kececioglu and Ravi [10] and was given a poly-
nomial time algorithm by Hannenhalli [5]. Bergeron, Mixtacki and Stoye [3]
pointed to an error in Hannenhalli’s proof of the translocation distance formula
and consequently in Hannenhalli’s algorithm. They presented a new proof fol-
lowed by an O(n3) algorithm for SRT. In a recent study [12] we proved that
the algorithm of Tannier et al.[13] for SBR can be adapted to solve SRT while
preserving the original time complexity (that is O(n3/2

√
log(n))).

It is well known that a translocation on a multi-chromosomal genome can
be simulated by a reversal on a concatenation of the chromosomes [6]. How-
ever, different translocations require different concatenations. In addition, intra-
chromosomal reversals on a concatenation of the chromosomes do not have
matching translocations. Thus, from a first glance the similarity between SRT
and SBT is rather limited. In [12] we presented the “overlap graph with chromo-
somes” of two multi-chromosomal genomes, which is an extension of the “overlap
graph” of two uni-chromosomal genomes. This auxiliary graph established a new
framework for the analysis of SRT that enabled us to adapt the currently fastest
algorithm for SBR to SRT [13,12]. In this paper we reveal new relationships
between SRT and SBR. Based on these relationships we develop two new algo-
rithms for SRT, which mimic known algorithms for SBR: a score-based method
building on Bergeron’s algorithm [2], and a recursive procedure similar to the
Berman-Hannenhalli method [4]. Though the proofs of the algorithms are more
involved than those of their counterparts for SBR, our procedures for transloca-
tions match the complexities of the original ones for reversals: the score-based
algorithms performs O(n2) operations on O(n) bit vectors; the recursive algo-
rithm runs in O(n2) time.

The paper is organized as follows. Section 2 gives the necessary preliminaries.
Section 3 presents the score-based algorithm and Section 4 presents the recursive
algorithm.

2 Preliminaries

This section provides a basic background for the analysis of SRT. It follows to a
large extent the nomenclature and notation of [5,8]. In the model we consider, a
genome is a set of chromosomes. A chromosome is a sequence of genes. A gene
is identified by a positive integer. All genes in the genome are distinct. When it
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appears in a genome, a gene is assigned a sign of plus or minus. For example,
the following genome consists of 8 genes in two chromosomes:

A1 = {(1, −3, −2, 4, −7, 8), (6, 5)}.

The reverse of a sequence of genes I = (x1, . . . , xl) is −I = (−xl, . . . ,−x1). A
reversal reverses a segment of genes inside a chromosome. Two chromosomes, X
and Y , are identical if either X = Y or X = −Y . Therefore, flipping chromosome
X into −X does not affect the chromosome it represents.

A signed permutation π = (π1, . . . , πn) is a permutation on the integers
{1, . . . , n}, where a sign of plus or minus is assigned to each number. If A is
a genome with the set of genes {1, . . . , n} then any concatenation πA of the
chromosomes of A is a signed permutation of size n. In the following, we assume
without loss of generality that there is a concatenation of the chromosomes in
B, πB, which is identical to the identity permutation. For example,

B = {(1, 2, . . . , 5), (6, 7, 8)}.

Let X = (X1, X2) and Y = (Y1, Y2) be two chromosomes, where X1, X2,
Y1, Y2 are sequences of genes. A translocation cuts X into X1 and X2 and Y
into Y1 and Y2 and exchanges segments between the chromosomes. It is called
reciprocal if X1,X2, Y1 and Y2 are all non-empty. There are two ways to perform
a translocation on X and Y . A prefix-suffix translocation switches X1 with Y2
resulting in:

(X1, X2), (Y1, Y2) ⇒ (−Y2, X2), (Y1, −X1).

A prefix-prefix translocation switches X1 with Y1 resulting in:

(X1, X2), (Y1, Y2) ⇒ (Y1, X2), (X1, Y2).

Note that we can mimic a prefix-prefix (respectively, prefix-suffix) translocation
by a flip of one of the chromosomes followed by a prefix-suffix (respectively, prefix-
prefix) translocation. As was demonstrated by Hannenhalli and Pevzner [6], a
translocation on A can be simulated by a reversal on πA in the following way:

(. . . , X1, X2, . . . , Y1, Y2, . . . ) ⇒ (. . . , X1, −Y1, . . . ,−X2, Y2, . . . ).

The type of translocation depends on the relative orientation of X and Y in πA

(and not on their order): if the orientation is the same, then the translocation is
prefix-suffix, otherwise it is prefix-prefix. The segment between X2 and Y1 may
contain additional chromosomes that are flipped and thus unaffected.

For a chromosome X = (x1, . . . , xk) define Tails(X) = {x1, −xk}. Note that
flipping X does not change Tails(X). For a genome A1 define Tails(A1) =⋃

X∈A1
Tails(X). For example:

Tails({(1, −3, −2, 4, −7, 8), (6, 5)}) = {1, −8, 6, −5}.

Two genomes A1 and A2 are co-tailed if Tails(A1) = Tails(A2). In particular,
two co-tailed genomes have the same number of chromosomes. Note that if A2
was obtained from A1 by performing a reciprocal translocation then Tails(A2) =
Tails(A1). Therefore, SRT is defined only for genomes that are co-tailed. For the
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rest of this paper the word “translocation” refers to a reciprocal translocation
and we assume that the given genomes, A and B, are co-tailed.

2.1 The Cycle Graph

Let N be the number of chromosomes in A (equivalently, B). We shall always
assume that both A and B contain genes {1, . . . , n}. The cycle graph of A and
B, denoted G(A, B), is defined as follows. The set of vertices is

⋃n
i=1{i0, i1}.

For every pair of adjacent genes in B, i and i + 1, add a grey edge (i, i +
1) ≡ (i1, (i + 1)0). For every pair of adjacent genes in A, i and j, add a black
edge (i, j) ≡ (out(i), in(j)), where out(i) = i1 if i has a positive sign in A and
otherwise out(i) = i0, and in(j) = j0 if j has a positive sign in A and otherwise
in(j) = j1. An example is given in Fig. 1. There are n − N black edges and
n − N grey edges in G(A, B). A grey edge (i, i + 1) is external if the genes i and
i + 1 belong to different chromosomes of A, otherwise it is internal.

61 50 5180 81 6011 31 30

Chromosome 2Chromosome 1

10 41 71 7021 20 40

Fig. 1. The cycle graph G(A1, B1), where A1 = {(1, −3, −2, 4, −7, 8), (6, 5)} and B1 =
{(1, . . . , 5), (6, 7, 8)}. Dotted lines corresponds to grey edges.

Every vertex in G(A, B) has degree 2 or 0, where vertices of degree 0 (iso-
lated vertices) belong to Tails(A) (equivalently, Tails(B)). Therefore, G(A, B)
is uniquely decomposed into cycles with alternating grey and black edges. Note
that the cycle graph is uniquely decomposed into cycles iff A and B are co-tailed.
An adjacency is a cycle with two edges.

2.2 The Overlap Graph with Chromosomes

Place the vertices of G(A, B) along a straight line according to their order in πA.
Now, every grey edge can be associated with an interval of vertices of G(A, B).
Two intervals overlap if their intersection is not empty but none contains the
other. The overlap graph with chromosomes of A and B w.r.t. πA, denoted
OVCH(A, B, πA), is defined as follows. There are two types of vertices. The
first type corresponds to grey edges in G(A, B)}. The second type corresponds
to chromosomes of A. Two vertices are connected if their associated intervals of
vertices overlap. For example see Fig. 2.

In order to avoid confusion, we will refer to nodes that correspond to chro-
mosomes as “chromosomes” and reserve the word “vertex” for the nodes that
correspond to grey edges of G(A, B). A vertex in OVCH(A, B, πA) is external
iff there is an edge connecting it to a chromosome, otherwise it is internal. Note
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(7,8)

oriented external

unoriented internal

unoriented external

oriented internal

chromosome 1

(6,7)

chromosome
chromosome 2

(3,4)(1,2)(2,3) (4,5)

Fig. 2. The overlap graph with chromosomes OVCH(A1, B1, πA1), where A1, B1 and
πA1 are as A1 and B1 are the genomes from Fig. 1 and πA1 = (1, −3, −2, 4, −7, 8, 6, 5).
The graph induced by the vertices within the dashed rectangle is OV(A1, B1, πA1).

that the internal/external state of a vertex in OVCH(A, B, πA) does not depend
on πA (the partition of the chromosomes is known from A). A vertex in the over-
lap graph is oriented if its corresponding edge connects two genes with different
signs in πA, otherwise it is unoriented.

Let OV(A, B, πA) be the subgraph of OVCH(A, B, πA) induced by the set of
vertices that correspond to grey edges (i.e. excluding the chromosomes’ vertices).
We shall use the word “component” for a connected component of OV(A, B, πA).
The set of components in OVCH(A, B, πA) can be computed in linear time using
an algorithm by Bader, Moret and Yan [1]. A component in OVCH(A, B, πA) is
external if at least one of the vertices in it is external, otherwise it is internal.
A component is trivial if it is composed of one internal vertex. A trivial compo-
nent corresponds to an adjacency. It is not hard to see that the set of internal
components in OVCH(A, B, πA) is independent of πA. Denote by IN (A, B) the
set of non-trivial internal components in OVCH(A, B, πA).

2.3 The Reciprocal Translocation Distance

Let c(A, B) denote the number of cycles in G(A, B).

Theorem 1. [3,5] The reciprocal translocation distance between A and B is
d(A, B) = n − N − c(A, B) + F (A, B), where F (A, B) ≥ 0 and F (A, B) = 0 iff
IN (A, B) = ∅.

Let ∆c denote the change in the number of cycles after performing a translo-
cation on A. Then ∆c ∈ {−1, 0, 1} [5]. A translocation is proper if ∆c = 1. A
translocation is safe if it does not create any new non-trivial internal component.
A translocation ρ is valid if d(A · ρ, B) = d(A, B) − 1. It follows from Theorem 1
that if IN (A, B) = ∅, then every safe proper translocation is necessarily valid.

In a previous paper [12] we presented a generic algorithm for SRT that uses
a sub-procedure for solving SRT when IN (A, B) = ∅. The generic algorithm
focuses on the efficient elimination of the non-trivial internal components. We
showed that the work performed by this generic algorithm, not including the
sub-procedure calls, can be implemented in linear time. This led to the following
theorem:
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Theorem 2. [12] SRT is linearly reducible to SRT with IN(A, B) = ∅.

By the theorem above, it suffices to solve SRT assuming that IN (A, B) = ∅.
Both algorithms that we describe below will make this assumption.

2.4 The Effect of a Translocation on the Overlap Graph with
Chromosomes

Let H = OVCH(A, B, πA) and let v be any vertex in H . Denote by N(v) ≡
N(v, H) the set of vertices that are neighbors of v in H , including v itself (but
not including chromosome neighbors). Denote by CH(v) ≡ CH(v, H) the set of
chromosomes that are neighbors of v in H . Hence if v is external then |CH(v)| =
2, otherwise CH(v) = ∅.

Every external grey edge e defines one proper translocation that cuts the black
edges incident to e. (Out of the two possibilities of prefix-prefix or prefix-suffix
translocations, exactly one would be proper.) For an external vertex v denote
by ρ(v) the proper translocation that the corresponding grey edge defines on
A. Let H · ρ(v) = OVCH(A · ρ(v), B, πA). Given two sets S1 and S2 define
S1

⊕
S2 = (S1

⋃
S2) \ (S1

⋂
S2).

Lemma 1. [12] Let v be an oriented external vertex in H. Then H · ρ(v) is ob-
tained from H by the following operations. (i) Complement the subgraph induced
by N(v) and flip the orientation of every vertex in N(v). (ii) For every vertex
u ∈ N(v) such that the endpoints of u and v share at least one common chro-
mosome, complement the edges between u and CH(u)

⋃
CH(v) (In other words

CH(u, H · ρ(v)) = CH(u, H)
⊕

CH(v, H)).

Two overlap graphs with chromosomes are equivalent if one can be obtained
from the other by a sequence of chromosome flips. For a chromosome X let ρ(X)
denote a flip of chromosome X in πA. Let H · ρ(X) = OVCH(A, B, πA · ρ(X)).

Lemma 2. [12] H · ρ(X) is obtained from H by complementing the subgraph
induced by the set {u : X ∈ CH(u)} and flipping the orientation of every vertex
in it.

It follows that an unoriented external vertex v in H becomes an oriented (exter-
nal) vertex in H · ρ(X), where X ∈ CH(v).

3 A Score-Based Algorithm

In this section we present a score-based algorithm for SRT when IN (A, B) = ∅.
This algorithm is similar to an algorithm by Bergeron for SBR [2].

Denote by NIN(v) and NEXT(v) the neighbors of v that are respectively in-
ternal and external. It follows that NIN(v)

⋃
NEXT(v)

⋃
{v} = N(v).

Lemma 3. Let v be an oriented external vertex in H and let w be a neighbor
of v. w has no external neighbors in H · ρ(v) iff NEXT(w) ⊆ NEXT(v) and
NIN(v) ⊆ NIN(w).
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For each vertex v in H we define the score |NEXT(v)|−|NIN(v)|. Define ∆IN(H, v)
as the set of vertices that belong to external components in H but are in non-
trivial internal components in H · ρ(v).

Lemma 4. Let O be a set of oriented external vertices. Let v ∈ O be a vertex
with maximal score in O. Then O

⋂
∆IN(H, v) = ∅.

Proof. Assume that u ∈ O
⋂

∆IN(H, v). Then u ∈ N(v, H) and by Lemma 3
NEXT(u) ⊆ NEXT(v) and NIN(v) ⊆ NIN(u). However, since v has the maximal
score in O, we get NEXT(u) = NEXT(v) and NIN(v) = NIN(u). Therefore, u is
an isolated internal vertex in H · ρ(v), a contradiction for u ∈ ∆IN(H, v). �


Theorem 3. Let O be a non-empty set of all the oriented external vertices in
H that overlap the same pair of chromosomes (i.e. CH(u) = CH(v) for every
u, v ∈ O). Let v ∈ O be a vertex that has the maximal score in O. Let S be the
set of all the vertices w that satisfy the following conditions in H:

1. w is a neighbor of v,
2. w is an unoriented external vertex and CH(w) = CH(v),
3. NEXT(w) ⊆ NEXT(v),
4. NIN(v) ⊆ NIN(w), and
5. O

⋂
NEXT(v) ⊆ NEXT(w).

If S = ∅ then ρ(v) is safe. Otherwise, let w ∈ S be a vertex that has a maximal
score in H · ρ(X), where X ∈ CH(v). Then ρ(w) is safe.

Proof. Suppose S = ∅ and assume that v is not safe. Let w ∈ ∆IN(H, v) be a
neighbor of v in H . It follows from Lemma 1 that CH(w) = CH(v). It follows
from Lemmas 3 and 4 that w ∈ S, a contradiction.

Suppose S �= ∅. Let O1 = O
⋂

NEXT(v). Then there are all possible edges
between S and O1 in H (last condition). Let H ′ = H · ρ(X), where X ∈ CH(v).
In H ′ all the vertices in S are oriented. Moreover, there are no edges between S
and O1

⋃
{v} in H ′. It follows that O1

⋃
{v} remains external after performing a

translocation on any vertex in S. Let w ∈ S be a vertex with maximal score in
S and assume ∆IN(H ′, w) �= ∅. Let u ∈ ∆IN(H ′, w) be a neighbor of w in H ′.
Then u satisfies: (i) CH(u) = CH(w) and (ii) there are no edges between u and
O1

⋃
{v} in H ′. Moreover, u is oriented in H ′ since otherwise u ∈ O1 and thus

could not be a neighbor of w. It follows that u satisfies conditions 1, 2 and 5 in
H . However, by Lemma 4 it follows that u /∈ S. Hence there are two possible
cases:

Case 1: NEXT(u) � NEXT(v) in H (i.e. condition 3 is not satisfied). Suppose
z ∈ NEXT(u) and z /∈ NEXT(v) in H . Then z /∈ NEXT(w) in H (condition 3).

Case 1.a: X /∈ CH(z). Then in H ′: z ∈ NEXT(u) and z /∈ NEXT(w). Then
according to Lemma 3, z has an external neighbor in H ′ · ρ(w), a contradiction.

Case 1.b: X ∈ CH(z). Then in H ′: z /∈ N(u), z ∈ N(v), z ∈ N(w). Therefore,
in H ′·ρ(w) the path u, z, v exists, a contradiction (since v is external in H ′·ρ(w)).

Case 2: NIN(v) � NIN(u) in H (i.e. condition 4 is not satisfied). Then there
exists x ∈ NIN(v), x /∈ NIN(u) in H ′. It follows from condition 4 that x ∈ NIN(w)
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in H ′. Since x is internal, all its edges exist in H ′. It follows from Lemma 3 that
u has an external neighbor (x) in H ′ · ρ(w), a contradiction. �


Theorem 3 immediately implies an O(n3) algorithm that can be implemented
using operations on bit vectors, in a similar manner to the implementation of
the algorithm of Bergeron [2] for SBR. The algorithm is presented in Fig. 3 and
uses the following notations. v denotes a bit vector of size n − N corresponding
to a vertex v, where v[u] = 1 iff u is a neighbor of v. X denotes a bit vector of
size n − N corresponding to chromosome X where X[v] = 1 iff X ∈ CH(v). ext
and o are two bit vectors of size n − N . ext[u] = 1 iff u is external. o[u] = 1
iff u is oriented. The score of each vertex is stored in an integer vector score.∧

,
∨

,
⊕

and ¬ respectively denote the bitwise-AND, bitwise-OR, bitwise-XOR
and bitwise-NOT operators.

One of the major differences between this algorithm and the original algorithm
[2] is that in some cases our algorithm performs two passes of maximum score
search while Bergeron’s algorithm performs only one pass.

1. Choose v with maximal score such that ext[v] = o[v] = 1.
2. Choose X, Y such that X [v] = Y [v] = 1.
3. S1 ← X

�
Y
�

v
�¬o

4. Build the vector S as follows.
S[w] ← 1 if the following conditions hold:
– S1[w] = 1 (conditions 1 and 2)
– (w

�
ext)

�
v = v (condition 3)

– (v
�¬ext)

�
w = w (condition 4)

– (v
�

ext
�

o)
�

w = w (condition 5)
5. If S �= 0 then flip X:

a. For every u such that X [u] = 1:
i. score ← score + u
ii. u ← u

�
X

iii. score ← score − u
b. Choose v such that S[v] = 1 and score[v] is maximal.

(Perform ρ(v) where v is an oriented external vertex)
6. score ← score + v
7. v[v] = 1
8. For every u such that v[u] = 1

a. If ext[u] = 1: then score ← score + u
else: score ← score − u

b. u[u] = 1, u ← u
�

v
c. If ext[u] = 0: X [u] = 1, Y [u] = 1, ext[u] = 1

Else if X [u] + Y [v] = 2: X [u] = 0, Y [u] = 0,ext[u] = 0
Else if X [u] = 1: X [u] = 0, Y [u] = 1.
Else if Y [u] = 1: Y [u] = 0, X [u] = 1.

d. If ext[u] = 1: score ← score − u
Else: score ← score + u

Fig. 3. A score-based algorithm for performing a safe translocation
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4 A Recursive Algorithm

In this section we present a recursive algorithm for SRT when IN (A, B) = ∅.
This algorithm is similar to an algorithm by Berman and Hannenhali for SBR [4].

Theorem 4. Let v be an oriented external vertex in H. Let w be a neighbor of
v in H. If w ∈ ∆IN(H, v) then ∆IN(H, w) ⊂ ∆IN(H, v).

Proof. Suppose w ∈ ∆IN(H, v). Obviously CH(v) = CH(w). Let x be a vertex
in H such that x /∈ ∆IN(H, v). We shall prove that x /∈ ∆IN(H, w). Let x =
x0, . . . , xk = y be a shortest path from x to an external vertex in H · ρ(v). Then
in H : xj is neighbor of v iff xj is a neighbor of w, for j = 1..k.

Case 1: w is oriented in H . Then the subgraphs induced by the vertices
{x0, . . . , xk} in H · ρ(w) H · ρ(v) are the same. Hence in H · ρ(w): y is external
and the path in x = x0, . . . , xk = y exists.

Case 2: w is unoriented in H . In H · ρ(v) the vertices in {x0, . . . , xk−1} are
internal and xk(= y) is external. Therefore xj ∈ {x0, . . . , xk−1} satisfies in H :
(i) xj is a neighbor of v iff xj is external and CH(xj) = CH(w), and (ii) xj is
not a neighbor of v iff xj is internal. Denote by H ′ the graph obtained from H
after flipping one of the chromosomes in CH(w).

Case 2.a: at least one vertex in {x0, ..., xk−1} is a neighbor of v in H . Choose
xj ∈ {x0, . . . , xk−1} a neighbor of v in H such that {x0, . . . , xj−1} are not neigh-
bors of v in H . Then in H the following conditions are satisfied: (i) x0, . . . , xj is
a path, (ii) all the vertices in {x0, . . . , xj−1} are internal and (iii) xj is external
satisfying CH(xj) = CH(v). Therefore in H ′ the path x0, . . . , xj still exists and
none of the vertices in the path is a neighbor of v (equivalently, w). Hence, the
path remains intact in H ′ · ρ(w).

Case 2.b: none of the vertices in {x0, . . . , xk−1} is a neighbor of v in H . Then
the path x0, . . . , xk exists in H ′. v is not a neighbor of w in H ′ hence v re-
mains external in H ′ · ρ(w). If xk is a neighbor of v and w in H ′ then the path
x0, . . . , xk, v exists in H ′ · ρ(w) and hence x = x0 /∈ ∆IN(H, w). If xk is not a
neighbor of v and w in H ′ then xk is necessarily external in H ′ (equivalently,
H). Thus none of the subgraphs induced by {x0, . . . , xk} in H ′ and H ′ ·ρ(w) are
identical. Hence x = x0 /∈ ∆IN(H, w). �


Theorem 5. If H contains an external vertex then there exists an external ver-
tex v such that ∆IN(H, v) ≤ n−N

2 .

Proof. Let v be an external vertex and assume CH(v) = {X, Y }. Let VXY =
{u : CH(u) = {X, Y }}. Let OXY ⊆ VXY be the set of oriented vertices in VXY .
We can assume w.l.o.g. that |OXY | ≥ |VXY |

2 (otherwise we flip X).
Case 1: there are two vertices, v1, v2 ∈ OXY , which are not neighbors. Let

M1 = ∆IN(H, v1) and M2 = ∆IN(H, v2). We shall prove that M1
⋂

M2 = ∅,
and hence min{|M1|, |M2|} ≤ n−N

2 . Assume u ∈ M1 and let u = u0, . . . , uk = v1
be the shortest path from u to v1 in H . Since v2 remains intact in H · ρ(v1)
there is no edge from v2 to any edge in that path. Therefore this path exists in
H · ρ(v2) and hence u /∈ M2.
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Case 2: the vertices in OXY form a clique. Let v be a vertex with maximal
score (|NIN(v)−NEXT(v)|). Then by Lemma 4, OXY

⋂
∆IN(H, v) = ∅ and hence

|∆IN(H, v)| ≤ |VXY \ OXY | ≤ |VXY |
2 ≤ n−N

2 . �


Algorithm. Find Safe Translocation Recursive

1. πA ← a concatenation of the chromosomes in A
2. Choose v from H = H(A,B, πA) according to Theorem 5.
3. If ∆IN(H,v) �= ∅:

a. M ← ∆IN(H,v)
b. Genes(M) ← {i : (i, i + 1) ∈ M}
c. Let AM (respectively, BM ) be the genome obtained from A (respec-

tively, B) after deleting all the genes that do not appear in Genes(M).
Remove common adjacencies of AM and BM by deleting one of the
genes in each adjacency from both AM and BM . Relabel the genes in
AM and BM such that there is a concatenation of the chromosomes in
BM that is identical to the identity permutation.

d. v ← Find Safe Translocation Recursive(AM , BM )
4. Return v

Fig. 4. A recursive algorithm for locating a safe translocation

Figure 4 presents a recursive algorithm for SRT that follows from Theorems 4
and 5. Note that in step 3.d the two genomes AM and BM must be co-tailed
since their cycle graph contains only cycles. We prove below that each call of the
algorithm can be implemented in linear time, hence the algorithm is O(n2).

Computing ∆IN(H, v): We use a linear time algorithm by Bader, Moret and
Yan [1] for computing the components of an overlap graph. The input for the
algorithm is the permutation πA ·ρ(v). The span of a component M is an interval
of genes I(M) = [i, j] ⊂ πA, where i = arg min{π−1

A (i1), π−1
A (i2) | (i1, i2) ∈ M}

and j = arg max{π−1
A (j1), π−1

A (j2) | (j1, j2) ∈ M}. Clearly we can compute the
spans of all the components in linear time. A component is internal iff the two
endpoints of its span belong to the same chromosome of A.

Implementation of step 2: Align the vertices of G(A, B) according to πA. For
v, a vertex in H , denote by Left(v) and Right(v) the left and right endpoints
respectively of its corresponding grey edge. Find two chromosomes X and Y
such that there exists an external vertex that overlaps both of them. Suppose X
is found to the left of Y in πA. Flip if necessary chromosome Y in πA to achieve
|OXY | ≥ |VXY |

2 . Suppose OXY = {v1, . . . , vk}, where Left(vj) < Left(vj+1) for
j = 1..k − 1.

If there exist two subsequent vertices vj and vj+1 such that Right(vj) >
Right(vj+1), then we found two edges that do not overlap. The computation of
∆IN(H, vj) and ∆IN(H, vj+1) is as described above. Otherwise, the vertices in
OXY form a clique. We calculate the score for all the vertices in OXY in linear
time in the following way. Let {I1, . . . , Ik} be a set of intervals forming a clique.
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Let U = {J1, . . . , Jl} another set of intervals. Let U(j) denote the number of
intervals in U which overlap with Ij . There is an algorithm by Kaplan, Shamir
and Tarjan [8] that computes U(j), j = 1..k in O(k + l). We use this algorithm
twice to compute |NEXT(vj)| and |NIN(vj)|, for j = 1..k.

5 Summary

In spite of the fundamental observation of Hannenhalli and Pevzner that translo-
cations can be mimicked by reversals [6], until recently the analyses of SRT and
SBR had little in common. Here and in [12] we tighten the connection between
the two problems, by presenting a new framework for the study of SRT that
builds directly on ideas and theory developed for SBR. Using this framework
we show here how to transform two central algorithms for SBR, Bergeron’s
score-based algorithm and the Berman-Hannenhalli’s recursive algorithm, into
algorithms for SRT. These new algorithms for SRT maintain the time complexity
of the original algorithms for SBR. These results strengthen our understanding
of the connection between the two problems. Still, deeper investigation into the
relation between SRT and SBR is needed. In particular, providing a reduction
from SRT to SBR or vice versa is an open interesting problem.

Any algorithm that solves SRT can be applied only to genomes that have the
same set of tails. In a future work we intend to study an extension of SRT that
also allows for non-reciprocal translocations, fissions and fusions and does not
require the genomes to be co-tailed.
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Abstract. Preliminary to most comparative genomics studies is the an-
notation of chromosomes as ordered sequences of genes. Unfortunately,
different genetic mapping techniques usually give rise to different maps
with unequal gene content, and often containing sets of unordered neigh-
boring genes. Only partial orders can thus be obtained from combining
such maps. However, once a total order O is known for a given genome,
it can be used as a reference to order genes of a closely related species
characterized by a partial order P . In this paper, the problem is to find
a linearization of P that is as close as possible to O in term of the break-
point distance. We first prove an NP-complete complexity result for this
problem. We then give a dynamic programming algorithm whose run-
ning time is exponential for general partial orders, but polynomial when
the partial order is derived from a bounded number of genetic maps.
A time-efficient greedy heuristic is then given for the general case, with
a performance higher than 90% on simulated data. Applications to the
analysis of grass genomes are presented.

1 Introduction

Despite the increase in the number of sequencing projects, the choice of candi-
dates for complete genome sequencing is usually limited to a few model organisms
and species with major economical impact. For example, the rice genome is the
only crop genome that has been completely sequenced. Other grasses of major
agricultural importance such as maize and wheat are unlikely to be sequenced in
the short term, due to their large size and highly repetitive composition. In this
case, all we have are partial maps produced by recombination analysis, physical
imaging and other mapping techniques that are inevitably missing some genes
(or other markers) and fail to resolve the ordering of some sets of neighboring
genes. Only partial orders can thus be obtained from combining such maps. The
question is then to find an appropriate order for the unresolved sets of genes.
This is important not only for genome annotation, but also for the study of evo-
lutionary relationships between species. Once total orders have been identified,
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the classical genome rearrangement approaches can be used to infer divergence
histories in terms of global mutations such as reversals [2,9,14].

In a recent study [16,18], Sankoff et. al. generalized the rearrangement by
reversal problem to handle two partial orders. The idea was to resolve the partial
orders into two total orders having the minimal reversal distance with respect to
each other. The problem has been conjectured NP-hard, and a branch-and-bound
algorithm has been developed for this purpose. The difficulty of this approach
is partly due to the fact that both compared genomes have partially resolved
gene orders. However, once a total order is known for a given genome, it can be
used as a reference to order markers of closely related species. For example, as
the grass genomes maintain a high level of conserved synteny [11,7], maps of the
completely sequenced rice genome can be used to deduce an order of markers in
other grass genomes such as maize.

In this paper, given a reference genome characterized by a total order O and
a related genome characterized by a partial order P , the problem is to find a
total order coherent with P minimizing the breakpoint distance with respect to
O. The underlying criterion is a parsimony one assuming a minimum number of
genomic rearrangements. After introducing the basic concepts in Section 2, we
show in Section 3 that the considered problem is NP-complete. We then give,
in Section 4, two dynamic programming algorithms. First is an algorithm that
solves exactly the problem on arbitrary partial orders, and whose worst-case
running time is exponential in the number of genes. However, when the partial
order considered is the intersection of a bounded number of genetic maps of
bounded width, the algorithm runs in polynomial time. We then present a fast
and accurate heuristic for the general problem in Section 5. We finally report
results on simulated data, and applications to grass genetic maps in Section 6.

2 A Graph Representation of Gene Maps

Hereafter, we refer to elementary units of a map as genes, although they could
in reality be any kind of markers. Moreover, as the transcriptional orientation
of genes is usually missing from genetic maps, we consider unsigned genes.

A genetic map is represented as an ordered sequence of gene subsets or blocks
B1, B2, . . . , Bq, where for each 1 ≤ i ≤ q, genes belonging to block Bi are
incomparable among themselves, but precede those in blocks Bi+1, . . . , Bq and
succeed those in blocks B1, . . . , Bi−1. For example, in Figure 1.a, {4, 5} is a
block, meaning that genes 4 and 5 are assigned to the same position, possibly
due to lack of recombination between them. A genetic map is thus a partial order
of genes.

Maps M1, . . . , Mm obtained from various protocols can be combined to form
a more complex partial order P on the union set of genes of all maps as follows:
a gene a precedes a gene b in P if there exists a map Mi where a precedes b.
However, combining maps can be a problem in itself, due to possible inconsis-
tencies, which would create precedence cycles (e.g. a precedes b in M1 but b pre-
cedes a in M2). Breaking cycles can be done in different ways, the parsimonious
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method consisting in eliminating a minimum number of precedence rules. An-
other potential problem is the presence of multiple loci (markers that are as-
signed to different positions in the same map). These issues have been considered
in previous studies [17,18,16], and a software is available for combining genetic
maps [10]. In this paper, we assume that the partial order P is already known.

Data set 1:     1  3  {4,5}  7  8  10  11  13  12  14  {9, 15, 16, 17, 21}  {18, 19} 20(a)

3

4

5
7 14

15

16
17
21

18

19
2010 121311

9

1 8Corresponding DAG: 

Data set 2:  2  6  8  11  12  16  20(b)

11 12 16 20862Corresponding DAG: 

1  2  3  4  5  6  7  8  10  11  13  12  14  9  21  15  16  17  18  19  20(d) A possible total order: 

14

15

16
17
21

18

19
2010 12138 11

9

62

1 3

4

5
7

Combined DAG:  (c)

Fig. 1. Data extracted from the comparison of maize and sorghum in the Gramene
database. The identity permutation (1 2 3 4 · · · ) represents the order of markers in the
“IBM2 neighbors 2004”[15] map for maize chromosome 5. The corresponding marker’s
partial orders in sorghum are deduced from (a) “Paterson 2003” [4] map of the chro-
mosome labelled C and (b) “Klein 2004” [13] map of the chromosome labelled LG-01;
(c) is the partial order obtained by combining (a) and (b); (d) is a linearization of (c)
minimizing the number of breakpoints.

As proposed in previous studies [17,18], we represent such a partial order
P as a directed acyclic graph (or DAG) (VP , EP ), where the vertex set VP

represents the set of genes along the chromosome and the edge set EP represents
the available order information (Figure 1). We consider a minimum set of edges,
in the sense that any edge of EP can not be deduced by transitivity from other
edges. In particular, a total order of genes is represented by a DAG such that
each edge connects a pair of consecutive genes.

Let P be a partial order represented by a DAG (VP , EP ). We say that a vertex
a is P -adjacent to a vertex b and write a <P b iff there is an edge in EP from a
to b. We say that a precedes b in P and write a �P b iff there is a path from a to
b. We say that vertices a and b are incomparable if neither a �P b nor b �P a,
and denote this by a ∼P b. A linearization of P is a total order O′ on the same
set of genes, such that a �P b ⇒ a �O′ b.

Given a partial order P and a total order O, our goal is to find a linearization
O′ of P , in such a way that O′ is as “similar” as possible to O. The distance
measure used here is the number bkpts(O, O′) of breakpoints between O and
O′, where a breakpoint is a pair of consecutive vertices (a, b) of O′ that are not
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consecutive in O (a <O′ b but a ≮O b). Equivalently, we may try to maximize
the number of O-adjacencies of O′, which is defined as the number of pairs of
consecutive genes in O′ that are also consecutive in O (Figure 1.d). Formally:

Minimum-Breakpoint Linearization (MBL) problem
Given: A partial order P and a total order O on the set of genes {1, 2, . . . , n},
Find: A linearization of P into a total order O′ so that bkpts(O, O′) is minimized.

Without loss of generality, we assume from now on that O is the identity
permutation (1, 2, . . . , n), that is i <O j ⇔ j = i + 1.

3 Hardness Results

In this section, we prove that the decision version of the MBL problem is NP-
complete: given a complete order O and a partial order P defined on the same
set of genes and an integer k′, can one find a linearization O′ of P such that
bkpts(O, O′) ≤ k′?

We propose a reduction from the NP-complete problem Maximum Inde-
pendent Set [8]: given a graph G = (V, E) and an integer k, can one find an
independent set of vertices of G – i.e. a set V ′ ⊆ V such that no two vertices of
V ′ are connected by an edge in E – of cardinality greater than or equal to k ?

We initially note that the MBL problem is in NP since given a complete order
O and a linearization O′ of P , one can compute the number of breakpoints in
linear time. In order to prove that the MBL problem is NP-complete, we show
that from any instance of Maximum Independent Set with a parameter k,
we are able to construct – in polynomial time – an instance of the MBL problem
such that k′ depends on k. We detail this construction hereafter.

For convenience, we define a reduction from a slightly different set of instances
for the Maximum Independent Set problem: connected graphs. This can be
done w.l.o.g. since the problem is still NP-complete in that case. Let G =
(V, E) be a connected graph of n vertices. We define the complete and the
partial orders O and P of the MBL problem as follows. The complete order O
is defined as a string O = δ α1 β1 γ1 α2 β2 γ2 . . . αn βn γn ε, and the partial
order P as a DAG P = (VP , EP ) with VP = {δ, α1, α2 . . . αn, β1, β2 . . . βn, γ1,
γ2, . . . γn, ε} and EP = {(δ, γ1)} ∪ {(γi, γi+1)|1 ≤ i < n} ∪ {(γn, αi), (γn, βi)|
1 ≤ i ≤ n} ∪ {(βi, αj), (βj , αi)|∀(vi, vj) ∈ E} ∪ {(αi, ε), (βi, ε)|1 ≤ i ≤ n}.

In order to complete the instance of the MBL problem, we define k′ =
(3n + 1) − k. In the following, we will refer to any such construction as a MBL-
construction.

First, let us present some interesting properties of any instance of Minimum-
Breakpoint Linearization problem obtained by a MBL-construction. Then,
we will use those properties to prove that the Minimum-Breakpoint Lin-
earization problem is NP-complete. An illustration of a MBL-construction of
a graph G of 6 vertices is illustrated in Figure 2.
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Fig. 2. Example of a MBL-constrction. The graph (a) is a connected graph of 6 vertices.
The sequence (b) represents the complete order O and the graph (c) represents the
partial order P obtained from the graph (a) by a MBL-construction.

Lemma 1. Let G = (V, E) be a graph and P = (VP , EP ) be a partial order
obtained from G by a MBL-construction. There exists no linearization O′ of
P where both αi <O′ βi and αj <O′ βj, for any αi, αj , βi, βj of VP such that
(vi, vj) ∈ E.

Proof. By contradiction, let us assume that there exists such a linearization O′

where αi <O′ βi and αj <O′ βj . Since (vi, vj) ∈ E, we have (βi, αj) ∈ EP

and (βj , αi) ∈ EP . Therefore, in any linearization of P – and consequently O′

– βi �O′ αj and βj �O′ αi – which leads, by transitivity, to βi �O′ αi; a
contradiction. �


Lemma 2. Let G = (V, E) be a graph of n vertices, O and P = (VP , EP ) be re-
spectively a complete and a partial order obtained from G by a MBL-construction.
Given any linearization O′ of P , bkpts(O, O′) = (3n+1)−k where k is the num-
ber of couples (αi, βi) such that αi <O′ βi.

Proof. By construction, in O, (i) δ <O α1 <O β1 <O γ1, (ii) ∀1 < i ≤ n,
γi−1 <O αi <O βi <O γi and (iii) γn <O ε. In any linearization O′ of P , (i)
δ <O′ γ1, (ii) ∀1 < i ≤ n, γi−1 <O′ γi and (iii) either αi <O′ ε or βi <O′ ε for a
given 1 ≤ i ≤ n. Therefore, in any linearization O′ of P , the only adjacencies that
can be preserved are the ones of the form αi <O βi for some 1 ≤ i ≤ n. Let k be
the number of couples (αi, βi) such that αi <O′ βi. If k = 0 then no adjacencies
at all are preserved, therefore bkpts(O, O′) = (3n+1). And consequently, if k > 0
then bkpts(O, O′) = (3n + 1) − k. �


We now turn to prove the following theorem.
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Theorem 1. A connected graph G = (V, E) admits an independent set of ver-
tices V ′ ⊆ V of cardinality greater than or equal to k if and only if there exists
a linearization O′ of P such that bkpts(O, O′) ≤ (3n + 1) − k, where O and P
result from a MBL-construction of G.

Proof. (⇒) Let V ′ ⊆ V such that |V ′| ≥ k and V ′ is an independent set. Let O′

be a linearization of P defined by O′ = δ P1 P2 P3 P4 ε where:

– P1 is the linearization of the subset of vertices V ′
1 = {γi|1 ≤ i ≤ n} such

that ∀1 < i ≤ n, γi−1 <P1 γi;
– P2 is any linearization of the subset of vertices V ′

2 = {βi|vi ∈ V − V ′};
– P3 is any linearization of the subset of vertices V ′

3 = {αi, βi|vi ∈ V ′} such
that ∀vi ∈ V ′, αi <P3 βi;

– P4 is any linearization of the subset of vertices V ′
4 = {αi|vi ∈ V − V ′}.

By Lemma 2, we can affirm that bkpts(O, O′) = (3n + 1) − |V ′|. Since, by
hypothesis, |V ′| ≥ k, we obtain bkpts(O, O′) ≤ (3n + 1) − k.

(⇐) Suppose we have a linearization O′ of P such that bkpts(O, O′) ≤ (3n +
1) − k. Let V ′ ⊆ V be the set of vertices such that:

∀(αi, βi) such that αi <O′ βi, add vi to V ′

By Lemma 1, we can affirm that V ′ is an independent set. Let us verify that
|V ′| ≥ k. By Lemma 2, Bkpts(O, O′) = (3n + 1) − k where k is the number of
couples (αi, βi) such that αi <O′ βi. Therefore, we obtain |V ′| = k. �


4 Exact Dynamic Programming Algorithms

Hereafter, we describe two exact dynamic programming algorithms for solving
the MBL problem. The first algorithm works on an arbitrary partial order P ,
but has a running time that can be exponential in |VP |. However, we show that
the algorithm’s running time is polynomial in the more realistic case where P is
built from a bounded set of genetic maps. The second algorithm applies to the
case where P is built from a single genetic map, and runs in linear time.

We begin with some preliminary definitions. Let A be a subset of vertices
of VP . A is a border of P iff any pair of vertices of A are incomparable, and
a maximum border iff any other vertex of VP is comparable to at least one
vertex of A. We also define, for any subset B ⊆ VP , front(B) = {x ∈ B :
x has no successor in B}. Note that the front of any set B is a border. Finally,
we denote pred(A) = A ∪ {x ∈ VP : ∃y ∈ A s.t. x �P y}.

4.1 A Dynamic Algorithm for Arbitrary Partial Orders

Let A be a maximum border. We denote by XA,i the maximum number of ad-
jacencies that can be obtained from a linearization of pred(A) that is consistent
with the partial order P , and that ends with vertex i (i.e. i is the rightmost ver-
tex in the total order of pred(A)). It is easy to see that the number of adjacencies
in the global optimal solution is maxi∈F XF,i adjacencies, where F = front(VP ).
The following theorem provides a recursive formula for the computation of XA,i.
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Theorem 2. For any border A and any vertex i ∈ A,

XA,i = max
j∈A′

XA′,j +
{

1 if |j − i| = 1
0 otherwise

where

A′ = front(pred(A) \ {i})) = (A \ {i}) ∪ {k | (k, i) ∈ EP and k /∈ pred(A \ {i})}

begins with A = F = border(VP ) and stops as soon as A is the empty set.
Computing all the entries of the dynamic programming table only requires

operations which can be done in linear time. If the partial order P admits b(P )
possible borders, the running time is O(b(P ) · |VP |2).

In the general case, the number of borders of P can be as much as 2|VP |,
if P consists of a single block of incomparable vertices. However, we are more
interested in the case where P is obtained by combining m genetic maps, where
each map contains a maximum of q blocks and the size of each block is at
most k. In this case, there are at most qm maximal borders in P . Furthermore,
two elements that are in the same border cannot be in different blocks on a
genetic map, so each maximal border is of size at most km, which allows 2km

possible subsets. Therefore, the total number of borders of P is bounded above
by b(P ) ∈ O(qm2km). Since, in practice, only two or three different genetic maps
are combined to form a partial order, the dynamic algorithm yields a practical
and exact solution to the MBL problem.

4.2 A Linear-Time Algorithm for Single Genetic Map

When P is a genetic map consisting of a list of blocks B1, B2, . . . , Bq, a much
faster linearization algorithm exists. Let Xi be the maximum linearization score
obtained in the partial subset B1 ∪ · · · ∪ Bi ⊆ VP . The maximum linearization
score of P is thus equal to Xq. Let Li represent the set of elements in Bi that
can be placed at the last position in a total ordering of B1∪· · ·∪Bi that achieves
the score Xi. Define the functions g1(X, Y ) = {x | x ∈ X and x + 1 ∈ Y } and
g2(X, Y ) = {y | y ∈ Y and y − 1 ∈ X}. Then, the values Xi and Li can be
determined recursively as follows.

Theorem 3. Define X0 = 0 and L0 = {}. Then, for any 1 ≤ i ≤ q,

Xi = Xi−1 + |g1(Bi, Bi)| +
{

1 , if |g2(Li−1, Bi)| ≥ 1
0 , otherwise

and

Li =
{

Bi \ g1(Bi, Bi) , if |g2(Li−1, Bi)| �= 1 or |Bi| = 1
Bi \ (g1(Bi, Bi) ∪ g2(Li−1, Bi)) , otherwise

The intuition behind the recursive definition of Xi is as follows: to get the max-
imum linearization score, we always want to join as many elements x, x + 1
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within a same block. Furthermore, as much as possible, we want to join consec-
utive elements in neighboring blocks as well. The set Li is used to keep track of
which elements can be put last in the ordering of Bi and therefore possibly be
matched with an element in the block Bi+1. If the elements of Bi are stored in
an ordered list, then the recursive definition of Theorem 3 can be implemented
in a recursive algorithm for which each iteration requires O(|Bi| + |Li−1|) time
to run, for a total time complexity of O(n) in the case of a genetic map of n
genes.

5 An Efficient Heuristic

Since our exact dynamic programming has a worst-case running time that is
exponential in the number of genes, a faster heuristic is required to solve large
problem instances. In this section, a greedy heuristic is developed for general
partial orders obtained from the concatenation of an arbitrary number of maps.
It aims to find a maximum number of O-adjacencies coherent with a partial
order P . At each step, the partial order is updated by incorporating adjacencies
of the longest O-adjacency path that can be part of a linearization of P . The
algorithm does not necessarily end up with a total order. Rather, it stops as soon
as no more adjacencies can be found. All linearizations of the obtained partial
order are then equivalent in the sense that they all give rise to the same number
of adjacencies.

1 4

10

9

82 3

6

11 5 7 12 14

13

Fig. 3. Dotted edges are all O-adjacencies that can, individually, be part of a lineariza-
tion of P . A bi-directional edge represents the concatenation of two edges, one in each
direction. An adjacency path of P is a directed sequence of consecutive dotted edges.

A direct (resp. indirect) adjacency path of P is a sequence of vertices of form
(i, i+1, i+2, · · · i+k) (resp. (i+k, · · · i+2, i+1, i)) such that for any 0 ≤ j < k,
either i + j <P i + j + 1 (resp. i + j + 1 <P i + j), or i + j and i + j + 1
are incomparable. For example, in Figure 3, (1, 2, 3, 4) (resp. (11, 10, 9, 8, 7)) is
a direct (resp. indirect) adjacency path. Notice that adjacencies of this indirect
path can not belong to any linearization of P , as gene 5 should be located after
11 but before 7.

We say that an adjacency path p of P is valid iff there is a linearization O′

of P such that p is a subsequence of O′. Lemma 3 gives the conditions for an
adjacency path to be valid. We need a preliminary definition.
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Definition 1. Given two vertices i and j, we say that i is compatible with j iff
the two following conditions hold:

1. i and j are either incomparable or i �P j;
2. Any vertex v verifying i �P v �P j belongs to the interval [i, j] (or [j, i] if

j < i).

Lemma 3. A direct (resp. indirect) adjacency path of P from i to i + k (resp.
from i + k to i) is valid if and only if, for any j1, j2 such that 0 ≤ j1 < j2 ≤ k,
i + j1 is compatible with i + j2. (resp. i + j2 is compatible with i + j1).

Algorithm Find-Valid-Path (P)
{Compute the list L of all adjacency paths of size 2}
For 1 ≤ i ≤ |V | do

If (i <P i + 1) or (i and i + 1 are incomparable) then
Add (i, i + 1) to L;

End For
k = 2;

{As long as L contains at least two elements, concatenate paths of size k to paths
of size k + 1}
While |L| ≥ 2 do

For j = 1 to |L| do
If Lj+1 and Lj are consecutive paths then

If Lj [1] is compatible with Lj+1[k] then
L′ = Concatenate(Lj , Lj+1);
Add L′ to LNew;

End For
If |LNew| > 0 then L = LNew; Clear(LNew);
k = k + 1;

End While
Return (L1);

Fig. 4. Finding a longest valid adjacency path of P . L is the list of adjacency paths of
size k, Lj denotes the jth path of L, and Lj [i] the ith vertex of Lj .

A preliminary preprocessing of P = (VP , EP ) is required to efficiently compute
successive adjacency paths.
1. Create the matrix M of size |VP |×|VP | verifying, for any i, j ∈ VP , M(i, j) =

1 iff i <P j and M(i, j) = 0 otherwise.
2. Compute the transitive closure of M , that is the matrice MT of size |VP | ×

|VP | verifying, for any i, j ∈ VP ,

MT (i, j) =

⎧⎨
⎩

1 iff i <P j
2 iff i �P j but i ≮P j
0 otherwise
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After the preprocessing step, the following Steps 1 and 2 are iterated as long
as P contains an adjacency path.

– Step 1: Find a longest valid direct or indirect adjacency path. An algorithm
for this step is described in Figure 4.

– Step 2: Incorporate the new adjacencies in MT , and compute the transitive
closure of MT .

Algorithm Find-Valid-Path (Figure 4) only considers the case of direct paths,
though generalization to indirect paths is straightforward. Valid paths are com-
puted beginning with paths of size 2. For a fixed k, any path p = (i, i+1, · · · i+k)
of size k is obtained from a concatenation of two valid consecutive paths p1 =
(i, i + 1, · · · i + k − 1) and p2 = (i + 1, i + 2, · · · i + k) of size k − 1. As p1 and p2
are valid paths, the path p is valid iff i is compatible with i + k.

Complexity: Computing the transitive closure of the adjacency matrix in the
preprocessing phase, as well as in Step 2, is done using the Floyd-Warshall al-
gorithm [6] in time complexity O(n3) where n is the number of vertices of the
corresponding graph. As each condition of Algorithm Find-Valid-Path can be
checked in constant time and L contains at most |V | − 1 elements, the time
complexity of Step 1 is in O(n). Moreover, Steps 1 and 2 are iterated at most
|V | times. Therefore, the worst time complexity of the greedy algorithm is in
O(n4).

6 Experimental Results

We first test the efficiency of the heuristic compared to the dynamic program-
ming algorithm for general partial orders on simulated data, and then illustrate
the method on grass maps obtained from Gramene (http://www.gramene.org/).

Simulated data: We simulate DAGs of fixed size n that can be represented as
a linear expression involving the operators ‘→’ and ‘,’ where P-adjacent genes
are separated by a ‘→’ and incomparable genes by a ‘,’. Such a representation is
similar to the one used in [12,17]. For example, the DAG in Figure 1.c has the
following string representation:

{2 → 6, 1 → 3 → {4, 5} → 7} → 8 · · · 14 → {9, 15, 16, 17, 21} → {18, 19} → 20

DAGs are generated according to two parameters: the order rate p that deter-
mines the number of ‘,’ in the expression, and the gene distribution rule q corre-
sponding to the probability of possible O-adjacencies. We simulated twenty
different instances for each triplet of parameters (n, p, q) with k ∈ {30, 50, 80, 100},
p ∈ {0.7, 0.9} and q ∈ {0.4, 0.6, 0.8}. We did not consider p values lower than 0.7,
as the dynamic programming algorithm exponential-time prevented us from test-
ing such instances.
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Fig. 5. CPU time expended by (a) the dynamic programming algorithm and (b) the
heuristic, for DAGs of a given size and width. Each result is obtained from 10 runs (10
different simulated DAGs). The Y axis is logarithmic.

Figure 5 shows that the running time of the dynamic programming algorithm
grows exponentially with the DAG’s largest border size, while the heuristic is
not affected by it (this was expected, as the time-complexity only depends on the
DAG’s size). We note that the greedy heuristic can easily handle partial orders
consisting of thousands of genes.

We now evaluate the heuristic’s optimality, namely the number of O-adjacen-
cies resulting from the obtained linearization compared to the optimal solution
(obtained with the dynamic programming algorithm). As illustrated by Table 1,
the performance of the greedy algorithm is almost always higher than 90%, and
usually close to 100%.

Table 1. Percentage of O-adjacencies resulting from the heuristic’s linearization com-
pared to the optimal solution (obtained with the dynamic programming algorithm).
Results are obtained by running the heuristic and dynamic programming algorithm on
10 different simulated DAGs for a given size and width.

DAG Width
2 3 4 5 6 7 8 9 10 11

G
en

om
e

si
ze 30 100 100 98,15 97,41 94,33 96,18 93,18 95,54 100 100

50 100 98,04 96,43 97,62 95,25 98,61 100 86,96 95,26 94,94

80 100 98,21 97,90 87,54 96,79 93,89 100 95,83 98,33 100

100 100 98,81 95,65 96,83 89,70 93,95 90,38 95,30 94,63 94,95

Illustration on grass genomes: The Gramene database contains a large
variety of maps of different grass genomes such as rice, maize and oats, and pro-
vides tools for comparing individual maps. A visualization tool allows to identify
regions of ‘homeology’ between species, that is a linear series of markers in one
genome that maps to a similar series of loci on another genome. Integrating
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marker orders between different studies remains a challenge to geneticists. How-
ever, as total orders are already obtained for widely studied species such as rice
which has been completely sequenced, one can use this information to order
markers on another species by using the adjacency maximization criterion.

Extracting the linear orders of markers using the Gramene visualization tool
remains unpractical for hundreds of markers, as no automatic tool is provided for
this purpose. We therefore illustrate the method on maps that are small enough
to be extracted manually. Maize has been chosen instead of rice as it has shorter
maps, though non-trivial, that can be represented graphically.

We used the “IBM2 Neighbors 2004” [15] map for chromosomes 5 (Figure 1)
and 1 (Figure 6) of maize as a reference, and compared it with the “Paterson
2003” [4] and “Klein 2004” [13] maps of the chromosomes labeled C and LG-01,
respectively, of sorghum. We extracted all markers of maize indicated as having a
homolog in one of the databases of sorghum. All are found completely ordered in
maize. This linear order is considered as the identity permutation. For markers
of sorghum that are located on maize chromosome 5 (resp. 1), a total order
maximizing the adjacency criterion is indicated in Figure 1.d (resp. Figure 6.b).
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Fig. 6. (a) The partial order of markers in sorghum that are located and totally ordered
on the maize chromosome 1; (b) A total order maximizing the adjacency criterion

7 Conclusion

We have presented a detailed complexity result and algorithmic study for the
problem of linearizing a partial order that is as close as possible to a given total
order, in term of the breakpoint distance. Applications on the grass genomes
show that this may be helpful to order unresolved sets of markers of some species
using the totally ordered maps of well studies species such as rice. However,
preliminary to the application of our algorithms is generating the appropriate
partial orders. For this purpose, an automated preprocessing of the Gramene
comparative database would be required to output the considered genetic maps,
and then combine them on a single partial order. The absence of such tools
prevented us from presenting more consequent applications.

The next step of this work will be to generalize our approach to two (or more)
partial orders, as previously considered in [16,18] for the reversal distance. As
conjectured by Sankoff, an NP-complete result for this problem should be proved.
A dynaming programming approach may also be envisaged for this case.



Inferring Gene Orders from Gene Maps Using the Breakpoint Distance 111

Considering the breakpoint (or similarly the adjacency) distance is a first step
towards more general distances such as the number of conserved or common
intervals [1,3,5]. Indeed, an adjacency of two genes is just a common interval
of size 2. A simple extension of the greedy heuristic would be to order genes
that remain unordered after maximizing adjacencies, by using the constraint of
maximizing intervals of size 3, 4 and so on.
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Abstract. Several mammalian genomes will only be sequenced at a 2X
coverage, resulting in the impossibility of assembling contigs into chro-
mosomes. We introduce the problem of ordering the contigs of two par-
tially assembled genomes so as to maximize the similarity (measured
in terms of genome rearrangements) between the assembled genomes.
We give a linear-time algorithm for the Block Ordering Problem
(BOP): Given two signed permutations (genomes) that are been broken
into blocks (contigs), order and orient each set of blocks, in such a way
that the number of cycles in the breakpoint graph of the resulting permu-
tations is maximized. We illustrate our algorithm on a set of 90 markers
from the human and mouse chromosomes X and show how the size of the
contigs and the rearrangement distance between the two genomes affects
the accuracy of the predicted assemblies. The appendix and an imple-
mentation are available at www.mcb.mcgill.ca/~egaul/recomb2006.

Keywords: Genome rearrangement, gene order,breakpoint graph,
genome assembly.

1 Introduction

The completion of several vertebrate genome sequencing projects (human, chimp,
mouse, rat, dog, chicken, etc.) has allowed detailed analyses of the processes
and history of genome rearrangement during mammalian evolution [1,2,3]. So-
phisticated methods now exist to study genome rearrangements on large, multi-
chromosomes genomes [4,5,6,7]. Still, some debate remains regarding the specific
arrangement of markers in ancestral genomes [8,9], and regarding the mech-
anisms at play (e.g. breakpoint re-use [10,11]). One of the best approaches to
resolve these questions is to use data from more species, but sequencing complete
vertebrate genomes is an expensive feat. While the sequencing of large quanti-
ties of short reads is highly automated and relatively cheap, the finishing step, in
which larger contigs are ordered and oriented into chromosomes, remains chal-
lenging. For this reason, many vertebrate genomes (cow, cat, rabbit, armadillo,
elephant, tenrec, etc.) are now being partially sequenced (2X coverage) and the
contigs are left unassembled. While this incomplete information is sufficient for
many applications (e.g. detection of regions under selective pressure [12,13]), it
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has, until now, been considered that this data is useless for studying genome
rearrangements.

In this paper, we introduce and solve a new algorithmic problem called the
block ordering problem. The input consists of two partially assembled
genomes, each represented as an unordered set of blocks (contigs). Each block
consists of an ordered list of one or more markers. Intuitively, our goal is to as-
semble the two genomes, using each other as incomplete reference, in such a way
that the rearrangement distance between the two assembled genomes is mini-
mized. Based on a parsimony criterion, such assemblies are those that are the
most likely to be correct. To be more precise, our algorithm outputs an assembly
of the two genomes that maximizes the number of cycles in the breakpoint graph
they induce. Maximizing the number of cycles in a breakpoint graph has been
shown to approximate very well the reversal distance between them [14]. This
first step in the study of genome rearrangements in the presence of partially
assembled genomes opens the door to a number of more difficult combinatorial
problems (see Future work and conclusion).

2 The Block Ordering Problem (BOP)

We assume that completely assembled genomes can be represented as signed
permutations of numbers between 1 and n, where each marker i is present exactly
once (in either orientation) in each of the two genomes considered. In this paper,
we focus on uni-chromosomal, linear genomes, but the algorithms are easily
adapted to circular genomes. Given two unfragmented permutations π1 and π2,
the problem of inferring most parsimonious rearrangement scenarios between
the two has received much attention over the last ten years and polynomial time
algorithms exist for most types of rearrangement operations [15,16,17].

A fragmented genome can be represented as an unordered set of blocks. A block
B of size s is a non-empty ordered list of s signed integers (markers), denoted
B = [i1, i2, ..., is] . Since the orientation of each block is unknown, we also need
to consider the reverse of each block B, denoted B = [−is, . . . ,−i2, −i1]. For
convenience, we define B0 = [0] and Bk+1 = [k + 1] as “dummy” blocks that
mark the beginning and end of the genome. For example, a set of blocks could be
B = {[0], [−7, −6, −3, 4], [5, 8, 9], [−2, −1], [10]}. An ordering PB of a set of blocks
B is an ordered list where each block or its reverse appears exactly once, and that
starts with B0 and ends with Bk+1. Each ordering of a set of blocks naturally
induces a signed permutation PB of size n by concatenating the blocks of the list
(in the following, we will use PB to equally designate the ordering or the induced
permutation). For example, PB = [[0], [1, 2], [−9, −8, −5], [−4, 3, 6, 7], [10]] is an
ordering of B and induces the permutation (0 1 2 −9 −8 −5 −4 3 6 7 10). This
motivates the following optimization problem, which is illustrated in Fig. 1.

Block Ordering Problem (BOP)
Given: Two sets of blocks A and B on n.
Find: An ordering PA of A and an ordering PB of B such that a criterion
c(PA, PB) is optimized.
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Fig. 1. Example of input to the Block Ordering Problem, together with a solution
that maximizes the number of cycles in the breakpoint graph of the resulting orderings
(and, in this case, that also minimizes the reversal distance between them).

In this paper, we describe algorithms to solve the BOP in the case where the
criterion c(PA, PB) being maximized is the number of cycles in the breakpoint
graph of the two permutations (see details below). This quantity has been shown
by Hannenhalli and Pevzner [16] to be a key determinant of the reversal distance
between the two permutations.

2.1 Related Work

Although, to our knowledge, partially assembled genomes of the type described
in the introduction have never been used in the context of genome rearrange-
ment studies, related questions have been studied in other contexts. A problem
similar to the BOP arises when trying to infer a minimal number of rever-
sals and translocations required to transform one multi-chromosome (but fully
assembled) genome into a another [7]. The current solution involves capping
chromosomes with special markers and then ordering them into a single linear
“meta-chromosome” in which reversals can be used to model intra-chromosomal
reversals, inter-chromosomal translocations, as well as chromosome fusions and
fissions. Although superficially similar, our problem is different in many aspects.
Ends of blocks are not similar to ends of chromosomes. The breaking of the per-
mutation into blocks represent missing information about the order of markers,
and is an experimental artifact, not the result of an evolutionary process.

Another related problem, introduced by Zheng et al. [18], is that of comparing
genetic maps represented as partial orders on a set of markers. This problem is
very different from the BOP because a block contains possibly many markers
which are totally ordered (as a subset), and between which it is not possible
to insert any other marker from another block. It is thus impossible to use the
formalism and method developed by Zheng et al. [18] to solve the BOP.

3 The Breakpoint and Fragmented Breakpoint Graphs

The precise definition of the problem addressed in this paper requires a few
definitions. Let B = [i1, ..., is] be a block belonging to the block set A. We say
that ik precedes ik+1 in A, for all k = 1...s − 1, and we denote this ik �A ik+1.
We also say that −ik+1 precedes −ik in A. Thus, B and B have the same set of
pairs for the precedence relation. Each element ij of B will be flanked by a left
point l(ij) and a right point r(ij). If ij > 0, we define l(ij) = i−j and r(ij) = i+j .
If ij < 0, we define l(ij) = |ij |+ and r(ij) = |ij|−. Each block B has two ends:
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l(i1) and r(is). For example, if B = [3, 4, −5], the two ends are 3− and 5−.
Notice that B and B have the same ends. If block sets A and B both consist of
a single block (i.e. they are permutations), a classic object originally defined by
Hannenhalli and Pevzner [16] is the breakpoint graph of A and B:

Definition 1 (Breakpoint Graph [16]). Given two sets of blocks on n, A and
B, each consisting of a single block, their Breakpoint graph GAB = (VAB , EAB)
is a the multi-graph defined as follows:

• VAB = {0+, 1−, 1+, 2−, 2+, . . . , n−, n+, (n + 1)−},
• For every i, j such that i�A j, there is an edge {r(i), l(j)} in EAB. Similarly,

for every i, j such that i �B j, there is an edge {r(i), l(j)} in EAB. Two
vertices can thus be connected by up to two edges.

As mentioned in the Introduction, Hannenhalli and Pevzner [16] have shown
that the minimal number of reversals required to transform a permutation into
another permutation of the same size (known as the reversal distance between
the permutations) is given by n − c + t, where n is the size of the permutations,
c is the number of cycles in their breakpoint graph GAB and t is the number of
reversals needed to get an “easy” configuration1. Since the value of t is usually
very small [14], minimizing the reversal distance is thus nearly equivalent to
maximizing the number of cycles. In the future, we intend to include t in the
optimization process.

Definition 2. Given two block sets A and B, the score c(PA, PB) of the si-
multaneous orderings (PA, PB) is the number of cycles in the breakpoint graph
GPAPB .

We clearly cannot build a breakpoint graph for our problem, because we do not
know a priori a total order for the markers in any of the two data sets. Instead,
we define the Fragmented Breakpoint Graph, which is a generalization of the
standard breakpoint graph defined above. Refer to Fig. 2 for an example.

Definition 3 (Fragmented Breakpoint Graph). Given two sets of blocks
A and B on n, their Fragmented breakpoint graph FAB = (V F

AB, EF
AB) is the

vertex-colored multi-graph where:

• V F
AB = {0+, 1−, 1+, 2−, 2+, . . . , n−, n+, (n + 1)−}

• Vertex i ∈ V F
AB is colored

⎧⎪⎪⎨
⎪⎪⎩

white if i is a block end in A but not in B.
black if i is a block end in B but not in A.
grey if i is a block end in both A and B.
red otherwise.

• As in the breakpoint graph, for every i, j such that i �A j and for every i, j
such that i �B j, there is an edge {r(i), l(j)} in EAB.

1 The value t is the minimal number of reversals needed to get rid of “bad” (unoriented)
components and to get a permutation which can be sorted in n − c reversals [15,19].
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Fig. 2. (a) The fragmented breakpoint graph, laid out as suggested in text,
for the two sets of blocks A = {[0], [1, 2, 3], [4, 5, 6], [7, 8, 9], [10]} and B =
{[0], [−7, −6, −3, 4], [5, 8, 9], [−2, −1], [10]}. (b) The breakpoint graph GPAPB for the
two permutations PA = (0 1 2 3 4 5 6 7 8 9 10) and PB = (0 1 2 − 7 − 6 −
3 4 5 8 9 10). This is an optimal solution for the block ordering problem for A and
B, for which the number of cycles is 7.

Notice that if A and B each consist of a single block, their fragmented break-
point graph is the same as their breakpoint graph. Following Pevzner and Tesler
[20], the fragmented breakpoint graph is drawn by representing block sets as
vertical and horizontal axis, and vertices aligned with the element ends they
represent in each block set (as in Fig. 2). We observe that the fragmented break-
point graph is composed exclusively of simple paths and of cycles (an isolated
vertex being seen as a trivial path). Moreover, all vertices are red, except those
at the start and end of each path. Notice that the fragmented breakpoint graph
can be computed from the block sets in O(n), where n is the number of markers.

4 The Block Ordering Graph

Our goal is to find simultaneously an ordering for both sets of blocks so as
to maximize the number of cycles in the breakpoint graph resulting from the
permutations. Observe that joining two blocks simply adds one edge to the
fragmented breakpoint graph. We thus have the following propositions.

Proposition 1. Joining two blocks from A or from B can only add one edge
to the graph FAB, between vertices of degree zero or one. This can only result
in joining two paths to form a new, longer path, or in closing a path to form a
cycle. �


Proposition 2. The score for an instance (A, B) of the BOP cannot exceed the
number of connected components of the fragmented breakpoint graph FAB. �


Proposition 3. If the fragmented breakpoint graph for A and B contains a cy-
cle, then this cycle will be present in the breakpoint graph derived from any
orderings (PA, PB). �
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One consequence of Proposition 3 that is that we can ignore in our quest all
cycles in FAB, since they will remain unchanged no matter how the blocks are
arranged. Our task is thus to close the greatest possible number of paths of the
fragmented breakpoint graph (thus forming cycles), but avoiding merging them
as much as possible. The rest of this section describes the structure that will
allow to do this optimally.

Having the last remarks in mind, we build a simplified version of the frag-
mented breakpoint graph, that we call the Block Ordering Graph. This graph is
obtained by removing unnecessary information from the fragmented breakpoint
graph and focusing on information that is relevant to the task. Information rep-
resenting blocks from the block sets is also added (refer to Fig. 3 for an example).

Definition 4 (Block Ordering Graph). Given two sets of blocks A and B,
their Block Ordering Graph, or BOG, is the vertex-bicolored, edge-bicolored
graph HAB = (V H

AB , EH
AB) where:

• Vertices are derived from the fragmented breakpoint graph FAB according to
the following rules:

◦ if i is a white vertex in FAB, then i is a white vertex in HAB.
◦ if i is a black vertex in FAB, then i is a black vertex in HAB.
◦ if i is a gray vertex in FAB, then i is duplicated in a white vertex and a

black vertex in HAB.
◦ if i is a red vertex in FAB, then i is not present in HAB.

• Edges are dashed or solid:
◦ if vertices i and j form the ends of a path in FAB, then {i, j} forms

a dashed edge in HAB. There is also a dashed edge between any pair
of vertices with the same label but with different colors. Dashed edges
joining two vertices of the same color are called one-sided edges, while
those joining two vertices of different colors are called two-sided edges.

◦ if i and j are of the same color and form the left and right ends of the
same block in A or in B, then {i, j} is a solid edge in HAB.

From the way it is derived from the fragmented breakpoint graph, it is clear that
the BOG is composed exclusively of paths and cycles. By looking at a general
situation (like the one illustrated in Fig. 3b), we identify different kinds of con-
nected components in the BOG: one-sided components are composed exclusively
of vertices of a same color, and two-sided components contain vertices of both
colors. We call starting and ending components the two single-edge components
joining the two 0+ vertices and the two (n + 1)− vertices, respectively. The fol-
lowing observation will have important consequences for deciding how to order
blocks.

Proposition 4. With the exception of the starting and ending components, all
components in the BOG are dashed-solid alternating cycles. Moreover, every
two-sided component has an even number of two-sided edges. �


Note that the block ordering graph can be computed from the fragmented break-
point graph in linear time (with respect to the number of markers).



Ordering Partially Assembled Genomes Using Gene Arrangements 119

a)

5−

A

B

0+ 1− 3+ 4− 6+ 7− 9+ 10−

2+ 7+ 4+ 9+ 10−0+ 1−

b)

Z

a b c d e f g h i j l m n

f’b’a’ g’ h’ n’i’e’ o’ p’

k

U
V

WX

Y

Fig. 3. (a) The BOG derived from the fragmented breakpoint graph of Fig. 2. White
vertices represent ends from block set A, and black vertices, those from B. Solid edges
join ends of a same block, and dashed edges represent ends that are part of the same
path in the fragmented breakpoint graph. {6+, 7−} is a one-sided edge, while {4−, 2+} is
a two-sided edge. (b) A BOG showing the four possible types of connected components.
The starting component is U , the ending component is Z, components X and Y are
one-sided, and components U, V, W and Z are two-sided. Notice that α-one-sided edges
are part of one-sided components (e.g. {k, l}), and β-one-sided edges, of two-sided
components (e.g. {c, d}).

5 Determining Optimal Orderings

Recall that each dashed edge in the block ordering graph HAB corresponds to a
path in the fragmented breakpoint graph FAB , and that we would like to close
as many of these paths as possible, by joining together pairs of blocks. In this
section, we first show how to close the paths corresponding to one-sided dashed
edges, and then address the more difficult case of two-sided edges.

5.1 Processing One-Sided Edges of the BOG

There are two types of one-sided edges in the BOG: those that are part of one-
sided components, that we will call the α-one-sided edges, and those that are
part of two-sided components, the β-one-sided edges. We start the discussion
with the latter type, which is the easiest to process.

β-one-sided edges, the one-sided edges from two-sided components.
We observe that one-sided edges involved in two-sided components (the β-one-
sided edges) correspond, in the fragmented breakpoint graph, to paths that can
be closed by simply joining two blocks in either A or in B. If it is done, the
problem looks the same as before, but some blocks have been merged into longer
ones, so we can imagine updating the BOG correspondingly. For example, in
Fig. 3b, merging together ends c and d results in a new “block” [b..e]. Obviously,
every β-one-sided edges can be processed this way before going further. The
proposed algorithm (described later) applies this simplification to the BOG, and
does the required bookkeeping to output correct orderings at the end.

Remark 1. We assume from now on that all the blocks connected by β-one-sided
edges have been joined into a single block, so that all two-sided components
consist only of two-sided edges and solid edges.

α-one-sided edges, the one-sided edges from one-sided components.
We would like to apply the processing described above to one-sided edges that
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are part of one-sided components, the α-one-sided edges. Unfortunately, not all
α-one-sided edges can simultaneously be “closed” that way, because this may
lead to an invalid solution: since each one-sided components is an alternating
cycle in the BOP, closing all its dashed edges would correspond to joining all
the corresponding block ends, ultimately resulting into a cycle of blocks. For
example, in Fig. 3b, connected component Y , joining together both {k, l} and
{j, m} results in the two blocks forming a cycle, and thus being impossible to
include in the global solution. Instead, one of the two dashed edges needs to
be sacrificed, resulting in four possible partial ordering: [[j..k][l..m]], [[−m.. −
l][−k.. − j]], [[l..m][j..k]] and [[−k.. − j][−m.. − l]]. One thus has to choose an
edge to sacrifice for each one-sided component. The good news is that any α-
one-sided edge can be sacrificed and the resulting partial ordering of blocks can
be inserted anywhere in the complete orderings, without changing the score of
the solution, according to the following proposition.

Proposition 5. Let (PA, PB) be any simultaneous orderings of instance (A, B)
(not necessarily optimal), and let C be a sublist of blocks of PA (resp. PB) such
that the ends i and j of the list are joined by a one-sided edge e = {i, j} ∈ EH

AB.
Then moving the sublist C as a whole in the ordering PA does not change the
number of cycles in the breakpoint graph GPAPB .

Proof. See Appendix. �


The conclusion to this section is that one-sided edges can be dealt with easily
and independently of two-sided edges. We will see later that this way of doing
things guarantees optimality of the output.

5.2 Processing Two-Sided Edges of the BOG

We now turn to the problem of dealing with two-sided components in a BOG.
We assume that all β-one-sided edges have been dealt with already, so that two-
sided components only consist of two-sided edges and solid edges. Closing the
paths corresponding to two-sided edges cannot be done by joining two blocks
from the same set (A or B), because these paths have one end in A and the
other end in B. Closing such a path thus requires to merge it with at least one
other path. Moreover, we need at least one additional end from each block set
to close that path. Since our goal is to maximize the final number of cycles,
the best way to choose these two additional free ends is to take them from an-
other two-sided path. Thus, if a BOG contains k two-sided edges2, the number
of cycles resulting from these two-sided edges will be at most k/2. We now show
that we can actually reach this upper bound by pairing correctly the two-sided
edges.

Unfortunately (or fortunately, for the sake of reducing ambiguity), it is not
always possible to pair together an arbitrary choice of two-sided edges. One

2 It follows from Prop. 4 that the number of two-sided edges in any BOG is even.



Ordering Partially Assembled Genomes Using Gene Arrangements 121

constraint is that it is impossible to join together a pair of two-sided edges that
are connected to a same block (solid edge) (for example: {b, b′} and {f, f ′} in
Fig. 3b), because this would imply that the ends of this block are adjacent in
the solution, which is not possible. Another problem arises from the requirement
that all blocks from each set must appear within the solution. For example, from
Fig. 3b, joining block ends a and g, f and i, h and b, and e and n yields in the
ordering [[a], [−g..−f ], [−i..−h], [b..e], [n]] for the white blocks and [[a′], [−g′..−
e′], [n′]] for the black blocks. The last of these partial orderings is not valid,
because it does not include all the blocks incident to two-sided edges. Fortunately,
it is always possible to find a pairing of two-sided edges that yields a valid
ordering of the blocks involved in two-sided components, and the rest of this
section shows how.

Definition 5 (Edge Matching Graph). The Edge Matching Graph EAB is
the edge-colored graph defined as follows:

• Vertices are the two-sided edges from the BOG HAB, the starting (resp.
ending) vertex corresponding to the starting (resp. ending) component of
HAB;

• There is an edge between two vertices v and w if the corresponding two-sided
edges in HAB are the ends of the solid edge {v, w} ∈ EH

AB. The edge is white
if v and w are white, and black otherwise. For convenience, there are also a
white and a black edge between the starting and ending vertices.

Figure 4a gives an example of the edge matching graph corresponding to the
block ordering graph of Fig. 3b. Observe that in the edge matching graph, each
connected component is an alternating cycle. The problem of finding a matching
of two-sided edges is now restated formally as the following problem in the edge
matching graph:

Definition 6 (The Edge Matching Problem). Given an edge matching
graph JAB = (V J

AB, EJ
AB), the Edge matching Problem is the problem of adding

a third kind of edges (the green edges) such that the following conditions hold:

1. The green edges (considered alone) define a perfect matching of the vertices
of JAB;

2. There is an alternating path from the start to the end vertices that visits all
green and white edges;

3. There is an alternating path from the start to the end vertices that visits all
green and black edges.

A solution to the instance of the problem of Fig. 4a is illustrated in Fig. 4b. The
problem is defined as above because a solution to this problem is a legal and
optimal matching of two-sided edges in the BOG. The matching condition will
merge the paths corresponding to all two-sided edges to get a maximal number
of cycles, and the two other conditions ensure that each block from each set is
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Fig. 4. (a) The edge matching graph for the BOG from Fig. 3b. In the current figure,
white edges are dashed and black edges are solid, a is the starting vertex, and n the
ending vertex. Notice that vertices of one-sided edge {c, d} separating {b, c} and {d, e}
have been joined together, to give birth to the new solid edge {b, e} (see Remark 1).
(b) One solution for the matching problem of the edge matching graph shown in (a),
in which the green edges are in bold. The solution correspond to simultaneous partial
orderings [[a], [b..e], [f..g], [h..i], [n]] and [[a′], [b′..f ′], [e′..g′], [h′..i′], [n′]]. These partial
orderings contribute four cycles in an eventual complete ordering of blocks.

part of the corresponding ordering3. It is relatively easy to find a solution to the
edge matching problem (see Algorithm 1).

Definition 7. Let JAB be an edge matching graph. A partial matching M of
the vertices of JAB using green edges and such that |M | < |V J

AB|/2 is valid if
the graph (VAB, EAB ∪ M) contains no green-white alternating cycles and no
green-black alternating cycles.

Note that if M is a valid partial matching for JAB with |M | = |V J
AB|/2 − 2, then

adding the last pair of vertices toM is a solution to the edge matching problem. The
following theorem states that it is always possible to grow a valid partial matching
into a valid partial matching, or into a solution to the edge matching problem.

Theorem 1. Let JAB be an edge matching graph and let M be a valid partial
matching of JAB, with |M | < |V J

AB|/2. Then, there exists a pair of vertices
{a, b} ⊆ V J

AB not already in M and such that M ∪ {{a, b}} is a valid partial
matching or a solution to the matching problem.

Proof. See Appendix. �


The consequence of Theorem 1 is that one can find a solution to the edge match-
ing problem by iteratively adding green edges one by one, each time ensuring
that the new edge does not close an alternating cycle. One will never reach a
point where no valid edge can be added, until a complete matching is obtained.
Thus, Algorithm 1 is guaranteed to return a solution to the edge matching prob-
lem. In fact, the algorithm can be used to generate all optimal solutions, simply
by exploring all choices on line 4. Moreover, the running time to find one solution
is linear in the number of initial markers, by implementing the algorithm with
hash tables that maintain black and white paths, which allows to choose a valid
green edge and update structures in constant time within the loop.
3 A white edge and a black edge have been added between the starting vertex and

the ending vertex in the definition of the graph to prevent a green edge to link them
prematurely into a path.



Ordering Partially Assembled Genomes Using Gene Arrangements 123

6 Putting Everything Together

Synthesizing all the previous remarks and propositions, we present the Block
Ordering Algorithm (BOA), which is an algorithm that can output one optimal
solutions to the BOP4 in linear time5.

Algorithm 1. EdgeMatchingAlgorithm
Require: A matching graph J = (V J , EJ ).
Ensure: Matching, a set of green edges that constitutes a solution to the edge match-

ing problem for J .
1: Matching ← {} � Represents the set of green edges
2: Unused ← V J � Represents the set of vertices not already matched
3: while |Matching| < |V J |/2 do
4: Choose a, b ∈ Unused such that Matching ∪ {{a, b}} is valid
5: Matching ← Matching ∪ {{a, b}}
6: Unused ← Unused \ {a, b}
7: end while
8: Matching ← Matching ∪ {Unused} � Only one pair left in Unused so add it

Algorithm 2. BOA: BlockOrderingAlgorithm
Require: Two sets of blocks A and B
Ensure: Ordering of A called PA and ordering of B called PB such that the number

of cycles of the breakpoint graph obtained from PA and PB is maximized.
1: FAB ← Fragmented Breakpoint Graph for A and B
2: HAB ← Block Ordering Graph obtained from FAB
3: JAB ← Edge Matching Graph from HAB
4: (ΦA, ΦB) ← Blocks joined by β-one-sided edges & removed from HAB � Rem. 1
5: (oA, oB) ← EdgeMatchingAlgorithm(JAB) � Process all two-sided edges
6: for each white one-sided component X of HAB do � Process 1-sided components
7: o ← some partial ordering induced by X
8: insert o anywhere between two blocks in oA � Proposition 5
9: end for

10: for each black one-sided component X of HAB do
11: o ← some partial ordering induced by X
12: insert o anywhere between two blocks in oB � Proposition 5
13: end for
14: Put blocks (ΦA, ΦB) back into (oA, oB) � Revert action of line 4
15: PA ← permutation induced by oA
16: PB ← permutation induced by oB

Theorem 2 (Score of Block Ordering Algorithm outputs). Let (PA, PB)
be orderings of instance (A, B) as output by the Block Ordering Algorithm. Then,
4 Notice that there are non-deterministic steps in the algorithm: lines 5, 7, 8, 11, 12
5 Each construction of an intermediate structure can be done in linear time in the

number of initial markers (see section corresponding to each structure).
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the score of (PA, PB) is c(PA, PB) = γ + k
2 + lα + lβ − ω, where γ is the number

of cycles in the fragmented breakpoint graph FAB, k is the number of two-sided
edges, lα is the number α-one-sided edges, lβ is the number of β-one-sided edges,
and ω is the number of one-sided components in the BOG HAB.

Proof. See Appendix. �


Theorem 3 (Optimality of the Block Ordering Algorithm). The Block
Ordering Algorithm outputs optimal orderings for every instance (A, B).

Proof. See Appendix. �


7 Experiments

To illustrate the proposed algorithm, we have implemented it and used it to
analyze both simulated and biological data. An interactive command-line ver-
sion of the program, ordering simultaneously two block sets, is available at
www.mcb.mcgill.ca/~egaul/recomb2006.

7.1 Biological Data Analysis

We first assess to what extent the solution to the BOP assembles the blocks
in the correct order for an actual set of biological markers. The gene content
of the X chromosomes of most mammals is generally well conserved, although
several intra-chromosomal rearrangements differentiate them. Rearrangements
in the X chromosome have been studied previously by Bourque et al.[1]. In their
genome-wide mammalian gene order analysis, Ma et al. [2] have identified 90
unique markers located on the human and mouse chromosomes X. The order
and orientation of these markers are quite different in the two species, and the
reversal distance between them is 22. The advantage of using fully assembled
genomes like human and mouse is that we know the correct gene arrangement.

We have artificially and randomly broken the corresponding signed permu-
tations into blocks of various sizes, to mimic partially assembled genomes. We
then ran the BOA algorithm on the two block sets and compared the predicted
marker arrangement of the human chromosome to the actual arrangement by
counting the number of breakpoints between the two. The breakpoint distance
was normalized by k−1, where k is the number of blocks. This normalized error
is thus the fraction of incorrect block joins.

Figure 5 shows how the relative error varies with the number blocks in the
fragmented chromosome. The ideal score of 0 usually cannot be reached, because
of the ambiguity that is part of the reconstruction process. The decrease in the
relative error as the number of blocks increases from 2 to 9 is due to the fact that
the absolute number of incorrect joins is relatively stable, while the normalizing
factor increases.

To get an idea of the source of the ambiguity in the reconstruction and get
some intuition about the impact of the topology of the connected components of
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the block ordering graph, diverse values have been computed while executing the
algorithm. The ambiguity is driven by four parameters: the number and size of
one-sided components, and the number and size of two-sided components. The
combinatorial choices in the edge matching algorithm suggests that the number
of two-sided edges is critical in the accuracy of the reconstruction. Indeed, Fig. 5b
and 5c clearly show that it is the number of two-sided components, and, in those,
the number of two-sided edges, that are the chief causes of ambiguity, and thus
of errors in the predictions. Block joins corresponding to β-one-sided edges are
part of all optimal solutions, those corresponding to α-one-sided are part of most
optimal solutions, and those corresponding to two-sided edges are generally part
of a small number of optimal solutions.

Fig. 5. (a) Error in reconstructing chromosomes X of human and mouse. Each chro-
mosome has been randomly broken into a certain number of blocks (x-axis). The y-axis
represents the mean of normalized breakpoint distances between the original and re-
constructed genomes. (b) Number of connected components of each type in the BOG
for the human-mouse chrX random fragmentation experiment. (c) Number of edges of
each type in the BOG. For all three graphs, numbers plotted are the average over 1000
random fragmentations.

7.2 Simulated Data

To get an idea of the accuracy of the reconstruction as a function of the rearrange-
ment distance between the two genomes being compared and as a function of
the number of markers available, we used simulated data. Pairs of permutations
of size 90 were generated to be separated by various reversal distances, and were
then randomly fragmented into a certain number of blocks. After running BOA
on this input, the normalized breakpoint error was computed. As seen in Fig. 6a,
the results are as expected; it is harder, as the distance between the two original
permutations or the number of blocks grows, to have good accuracy in the recon-
struction. However, the error grows relatively slowly with the reversal distance,
indicating that it might be possible to assemble pairs of genomes that are signifi-
cantly more rearranged than human-mouse chrX. The third experiment has been
designed to determine if it is possible to compensate for the lack of control on
the number of blocks by adding more markers in the data. As Fig. 6b shows, the
accuracy of the solution quickly improves with the number of markers. Indeed,
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Fig. 6. (a) Error in reconstructing permutations of size 90, for pairs of permutations
separated by various reversal distances. The vertical line at x = 22 represents the
reversal distance between human and mouse chrX. Each curve corresponds to a different
number of blocks in the fragmented genomes. (b) Error in reconstructing permutations
at reversal distance 22, as a function of the number of markers available. Each curve
corresponds to a different number of blocks.

as the number of markers increases, it becomes less likely that a break between
block will land on a breakpoint between the two permutations.

8 Future Work and Conclusion

This work is a first step toward using the wealth of information coming from
partially assembled genomes for studying genome rearrangements. A number
of exciting algorithmic and evolutionary questions remain to be answered. We
are currently working on generalizing the approach described here to optimize
the actual reversal distance (rather than the number of cycles in the breakpoint
graph). Generalizations to other rearrangement distances are also possible. Sec-
ond, we plan to generalize our approach to handle multi-chromosomal genomes,
although a new formalism will be needed to model chromosome ends. Finally,
although we have shown in Sect. 7 that fairly accurate assemblies can be inferred
even when the two genomes are fragmented in relatively small blocks, the accu-
racy could potentially be improved if more than two genomes were considered
simultaneously. In a parsimony-based approach, one could consider a set of com-
pletely or partially assembled genomes labeling the leaves of a given phylogenetic
tree, and ask to simultaneously order the partially assembled genomes and infer
ancestral gene orders, in order to optimize some rearrangement-based criterion.
Although this problem would be NP-hard for most optimization criteria, efficient
heuristics may yield improved predictions of ancestral gene arrangements.

9 Supplementary Material

Implementation and proofs are available at:
http://www.mcb.mcgill.ca/~egaul/recomb2006
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Abstract. Given a phylogenetic tree T for a family of tandemly re-
peated genes and their signed order O on the chromosome, we aim to
find the minimum number of inversions compatible with an evolutionary
history of this family. This is the first attempt to account for inver-
sions in an evolutionary model of tandemly repeated genes. We present
a time-efficient branch-and-bound algorithm and show, using simulated
data, that it can be used to detect “wrong” phylogenies among a set
of putative ones for a given gene family. An application on a published
phylogeny of KRAB zinc finger genes is presented.

Keywords: gene family, gene order, inversion, duplication, phylogeny.

1 Introduction

A large fraction of most genomes consists of repetitive DNA sequences. In mam-
mals, up to 60% of the DNA is repetitive. A large proportion of such repetitive
sequences is organized in tandem: copies of a same basic unit that are adjacent
on the chromosome. The duplicated units can be small (from 10 to 200 bps) as
it is the case of micro- and minisatellites, or very large (from 1 to 300 kb) and
potentially contain several genes. Such large segment duplication is a primary
mechanism for generating gene clusters on chromosomes.

Many gene families of the human genome are organized in tandem, including
HOX genes [31], immunoglobulin and T-cell receptor genes [21], MHC genes [20]
and olfactory receptor genes [11]. Reconstructing the duplication history of each
gene family is important to understand the functional specificity of each copy,
and to provide new insights into the mechanisms and determinants of gene du-
plication, often recognized as major generators of novelty at the genome level.

Based on the initial evolutionary model of tandemly repeated sequences in-
troduced by Fitch [9], a number of recent studies have considered the problem
of reconstructing a tandem duplication history of a gene family [5,6,7,16,28,32].
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These are essentially phylogenetic inference methods using the additional con-
straint that the resulting tree should induce a duplication history concordant
with the given gene order. When a phylogeny is already available, a linear-time
algorithm can be used to check whether it is a duplication tree [32]. However,
even for gene families that have evolved through tandem duplications, it is often
impossible to reconstruct a duplication history [7]. This can be explained by the
fact that the duplication model is oversimplified, and other evolutionary events
have occurred, such as gene losses or genomic rearrangements.

Evidence of gene inversion is observed in many tandemly repeated gene fam-
ilies, such as zinc finger (ZNF) genes, where gene copies have different tran-
scriptional orientations [25]. Although genome rearrangement with inversions
has received large attention in the last decade [14, 17, 4, 26, 2], beginning with
the polynomial-time algorithm of Hannenhalli and Pevzner for computing the
reversal distance between two signed gene orders [14], inversions have never been
considered in the context of reconstructing a duplication history from a gene tree.
In the case of general segmental duplications (not necessarily in tandem), poten-
tial gene losses have been considered to explain the non congruence between a
gene tree and a species tree [12,19,18,3]. Similarly, in the case of tandem dupli-
cation, the non-congruence between a gene tree and an observed gene order can
be naturally explained by introducing the possibility of segmental inversions.

In this paper, our goal is to infer an evolutionary history of a gene family
accounting for both tandem duplications and inversions. As the number of such
possible evolutionary histories may be very large, we restrict ourselves to finding
the minimum number of inversions required to explain a given ordered phy-
logeny. As a first attempt, we only considered tandem duplications involving
single genes. Though the model described by Fitch [9] allows for simultaneous
duplications of several gene copies, single duplications are known to be predom-
inant over multiple duplications [1, 9, 28].

After describing the evolutionary models in section 2 and the optimization
problem in section 3, we present our main branch-and-bound algorithm in sec-
tion 4. Finally, in section 5, we test the algorithm’s time-efficiency on simulated
data and show its usefulness to detect, among a set of possible phylogenies, the
“wrong” ones. An application on KRAB zinc finger genes is presented.

2 The Evolutionary Model

2.1 Duplication Model

This model, first introduced by Fitch [9], is based on unequal recombination
during meiosis, which is assumed to be the sole evolutionary mechanism (except
point mutations) acting on sequences. Consequently, from a single sequence, the
locus grows through a series of consecutive duplications, giving rise to a sequence
of n adjacent copies of homologous genes having the same transcriptional ori-
entation. We denote by O = (l1, · · · ln) the observed ordered sequence of extant
gene copies.
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A tandem duplication history (or just duplication history for brevity) is the
sequence of tandem duplications that have generated O. It can be represented by
a rooted tree with n ordered leaves corresponding to the n ordered genes, in which
internal nodes correspond to duplication events (Figure 1.a). Duplications may
be simple (duplication of a single gene) or multiple (simultaneous duplication of
neighboring genes). In this paper, we only consider simple duplications.

(b)(a) (c)

double duplication

simple duplication 
ancestral segment

extant locus l1

l1 l1

l2

l2 l2

l3

l3 l3

l4

l4 l4

l5

l5 l5

l6

l6 l6

l7

l7 l7

Fig. 1. (a) Duplication history; each segment represents a copy. (b) The unrooted
duplication tree corresponding to history (a). (c) The duplication tree corresponding
to history (a).

In a real duplication history, the time intervals between consecutive duplica-
tions are known, and the internal nodes are ordered from top to bottom according
to the moment they occurred in the course of evolution. However, in the absence
of a molecular clock mode of evolution, it is impossible to recover the order of
duplication events. All we can infer from gene sequences is a phylogeny with or-
dered leaves (Figure 1.b). Formally, an ordered phylogeny is a pair (T, O) where
T is a phylogeny and O is the ordered sequence of its leaves. According to this
model, all the genes have the same transcriptional orientation.

If an ordered phylogeny (T, O) can be explained by a duplication history H,
we say that (T, O) is compatible with H, and that H is a duplication history of
(T, O). If (T, O) is compatible with at least one duplication history, it is called
a duplication tree. Choosing appropriate roots for unrooted duplication trees is
discussed in [10] (Figure 1.c).

In the rest of this paper, a duplication tree will refer to a simple rooted du-
plication tree, that is a rooted duplication tree that is compatible with at least
one history involving only simple duplications. Unless otherwise stated, all the
phylogenies are rooted.

2.2 A Duplication/Inversion Model

Many tandemly repeated gene families contain members in both transcriptional
orientations. The simple duplication model is thus inadequate to describe their
evolution. To circumvent this limitation, we propose an extended model of du-
plication which includes inversions. Thereafter, the transcriptional orientations
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of the genes in a signed ordered phylogeny (T, O) are specified by signs (+/−)
in O. Thus O is formally a signed permutation of the leaves of T . We denote by
dinv(Oi, Oj) the inversion distance between the two signed permutations Oi and
Oj . Note that a signed ordered phylogeny (T, O) cannot be a duplication tree
unless all the genes in O have the same sign (although this is not a sufficient
condition).

Definition 1. A simple duplication/inversion history (or just dup/inv history)
of length k is an ordered sequence Hk = ((T1, O1), ..., (Tk−1, Ok−1), (Tk, Ok))
where :

1. Every (Ti, Oi) is a signed ordered phylogeny.
2. T1 = v is a single leaf phylogeny and O1 = (±v) one of the two trivial orders.
3. For 0 < i < k,

– if Ti+1 = Ti, then dinv(Oi, Oi+1) = 1. This corresponds to one inversion
event.

– if Ti+1 �= Ti, then Ti+1 is obtained from Ti by adding two children u and
w to one of its leaf v. In this case Oi+1 is obtained from Oi by replacing
±v by (±u, ±w). This corresponds to a simple duplication event.

3 An Inference Problem

A signed ordered phylogeny is not necessarily compatible with a duplication
history. The following lemma shows that additional inversions can always be
used to infer a possible evolutionary history for the gene family.

Lemma 1. A signed ordered phylogeny (T, O) is compatible with at least one
simple duplication/inversion history.

Proof. According to Definition 1, obtain a duplication tree (T, O′) by succes-
sive duplication events. Then, transform O′ into O by applying the required
inversions. �

As the number of possible dup/inv histories explaining (T, O) can be very large,
we restrict ourselves to finding the minimum number of events involved in such
evolutionary histories. More precisely, as the number of simple duplications is
fixed by T , we are interested in finding the minimum number of inversions in-
volved in a dup/inv history. The next theorem shows that if i is the minimum
number of inversions needed to transform O into O′ such that (T, O′) is a du-
plication tree, any dup/inv history of (T, O) contains at least i inversions.

Theorem 1. Let (T, O) be a signed ordered phylogeny. For any dup/inv history
H with i inversions leading to (T, O), there exists a duplication tree (T, O′) such
that dinv(O, O′) ≤ i.

Proof by induction.
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– Base case: Let H1 = (T1, O1) be a dup/inv history with no duplication or
inversion. Clearly (T, O′) = (T1, O1) is a duplication tree.

– Induction step (on the number k of events):
Let Hk+1 = ((T1, O1), ..., (Tk, Ok), (Tk+1, Ok+1)) be a dup/inv history in-
volving k +1 events and i inversions and Hk = ((T1, O1), ..., (Tk, Ok)). From
Definition 1, there are two possibilities:

• If Tk+1 = Tk, then the last event is an inversion, and Hk is a dup/inv
history involving i − 1 inversions. By induction hypothesis, there exists
a duplication tree (Tk, O′

k) such that dinv(Ok, O′
k) ≤ i − 1. Let Ok+1 be

the order obtained from Ok by applying the last inversion. Then we have
dinv(Ok+1, O

′
k) ≤ dinv(Ok, O′

k) + 1 ≤ i.
• If Tk+1 �= Tk, the last event is a duplication, that is a leaf ±v of (Tk, Ok)

is replaced by two consecutive leaves (±u, ±w) in (Tk+1, Ok+1). Let
(Tk, O′

k) be the duplication tree associated to Hk and suppose that all
elements of O′

k are positive. If we have +v in Ok, we obtain O′
k+1 by

replacing +v by (+u, +w) in O′
k. Otherwise we have −v in Ok and we ob-

tain O′
k+1 by replacing +v by (+w, +u) in O′

k. Thus, dinv(Ok+1, O
′
k+1) =

dinv(Ok, O′
k) ≤ i and (Tk+1, O

′
k+1) is a duplication tree. The case where

the elements of O′
k have a negative sign is similar. �

Corollary 1. Let (T, O) be a signed ordered phylogeny and (T, O′) a duplication
tree such that dinv(O, O′) = i is minimum. There exists a dup/inv history H for
(T, O) with exactly i inversions, which is optimal.

Proof. The existence of H for (T, O) with exactly i inversions follows directly from
the proof of Lemma 1. The number i of inversions in H must be optimal, other-
wise, from Theorem 1, it would contradicts the hypothesis that dinv(O, O′) = i
is minimum. �

Corollary 1 allows to reformulate our problem in the following way :

Minimum-Inversion Duplication problem
Input: A signed ordered phylogeny (T, O),
Output: An order O′ such that (T, O′) is a duplication tree and dinv(O, O′) is
minimal.

4 A Branch-and-Bound Algorithm

We begin by briefly summarizing the Hannenhalli-Pevzner method [14], as it will
be used in our approach.

4.1 Hannenhalli-Pevzner (HP) Algorithm

Given two signed permutations O, O′ of size n on the same set of genes, the
problem is to find the minimal number dinv(O, O′) of inversions required to
transform O to O′ (or similarly O′ to O). The algorithm is based on a bicolored
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graph, called the breakpoint graph, constructed from the two permutations as
follows: if gene x of O has a positive sign, replace it by the pair xtxh, and if it is
negative, by xhxt. Then the vertices of the graph are just the xt and the xh for
all genes x. The graph contains two classes of edges: the real and desired edges
(as named in [24]). Any two vertices which are adjacent in O, other than xt and
xh deriving from the same x, are connected by a real edge, and any two adjacent
in O′, by a desired edge. This graph decomposes naturally into a set of c disjoint
color-alternating cycles. An important property of the graph is its decomposition
into components, where a component is a maximal set of “crossing” cycles.

Based on this graph, the inversion distance can be computed according to the
following formula [14]:

dinv(O, O′) = n + 1 − c + h + f,

where h and f are quantities related to the presence of “hurdles” (components
of a particular type). As the probability for a component to be a hurdle is low,
h and f are usually close to 0. Therefore, the number of cycles c is the dominant
parameter in the formula. In other words, the more cycles there are, the less
inversions we need to transform O into O′.

4.2 Enumerating the Compatible Orders

We say that an order O′ is compatible with a phylogeny T iff (T, O′) is a duplica-
tion tree. To enumerate all the orders compatible with T , we associate a binary
variable bi to each internal node i of T . Each bi defines an order relation between
the left and right descendant leaves of i. By setting bi to 0, we make all the left
descendants smaller than the right ones. Conversely, by setting bi to 1, all left de-
scendants are considered larger than the right ones (see Figure 2.a.b). Assigning
a value to all internal nodes of T defines a total order O′ on its leaves: the order
between two leaves is determined by the bi value of their closest common ances-
tor. Otherwise, the order is partial since some pairs of leaves are incomparable.
We will denote such a partial order as O∗. Note that every such order admits
two transcriptional orientations according to our definition of a duplication tree.

Lemma 2. An order O′ is compatible with T iff it is defined by an assignment
of all the binary variables bi in T and all the genes have the same sign.

Therefore, if n is the number of leaves in T , there are 2n−1 possible assign-
ments of the bi variables, each with two possible transcriptional orientations.
This leads to 2n distinct orders O′ compatible with T . Hereafter, for clarity of
presentation, we will only consider one of the two orientations.

4.3 A Lower Bound for the Inversion Distance

To avoid computing dinv(O, O′) for each of the 2n orders O′ compatible with T ,
we consider a branch-and-bound strategy similar to the one used in [33]. The
idea is to compute a lower bound on dinv(O, O′) as we progressively define O∗
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Fig. 2. (a) A phylogeny with an appropriate depth-first labeling of the internal nodes;
(b) The duplication tree corresponding to an assignment of the bi variables of (a);
(c) The breakpoint graph illustrating the difference between the gene order O′ =
(1, 3, 2, 4) obtained from the duplication tree (b) and the gene order O = (1, 2, −3, 4)
observed in the genome. Desired edges (curved edges) are added in the same order as
the corresponding bi values (b1 then b2 then b3). For simplicity, the genome is assumed
to be circular (gene 1 next to gene 4).

by updating the breakpoint graph of (O, O∗). In order to progressively construct
this graph, it is essential to define the bi values in a depth-first manner according
to T : the binary variables of all the descendant nodes of i should be defined before
bi. This insures that the two subtrees of i have a total order on their leaves.

Consequently, if we set bi to 0, the greatest left descendant leaf lmax of node
i will immediately precedes its smallest right descendant leaf rmin in O′. Con-
versely, if bi is set to 1, the greatest right descendant rmax will immediately
precede the smallest left descendant lmin. Therefore, the assignment of a bi

value allows us to add a desired edge in the breakpoint graph between lmax and
rmin (or rmax and lmin) (see Figure 2.c).

Let O∗ be the partial order obtained at a given stage of the procedure. Let
e be the number of cycles and p the number of remaining edges to place in the
corresponding incomplete breakpoint graph. Each of the remaining edges can
create at most one cycle, ending with a breakpoint graph with at most c = e+ p
cycles. Thus, any total order O′ that can be obtained from the partial order O∗

is such that:

dinv(O, O′) = n + 1 − c + h + f ≥ n + 1 − c ≥ n + 1 − p − e = d∗inv(O, O∗).

The branch-and-bound algorithm proceeds as follows. An initial assignment of
all binary variables is considered and the corresponding exact reversal distance
dinv(O, O′) is computed using the HP algorithm. Each following step re-assigns
the binary variables in a depth-first manner. If the partial order O∗ obtained is
such that d∗inv(O, O∗) ≥ mininv, where mininv is the lowest inversion distance
obtained from the previous steps, we backtrack to the last node (closest to the
root) that has not been re-assigned twice. This is justified by the fact that any
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total order that can be obtained from O∗ cannot be smaller than the current
best value. Every time we reach a leaf, we use the HP algorithm to compute
dinv(O, O′) and update mininv.

5 Results

5.1 Branch-and-Bound Efficiency

To test the efficiency of the branch-and-bound algorithm, we generated 3 sets of
500 phylogenies each with respectively 10, 20 and 40 leaves using r8s [23]. We
then defined arbitrarily compatible orders to obtain a total of 1,500 duplication
trees. For each of them, we performed 1, 2, 4 and 8 inversions to obtain 12
datasets containing a total of 6,000 signed ordered phylogenies which are no
longer duplication trees.

We applied our algorithm on each dataset and measured the execution time
(on a Pentium 4) and the average fraction of nodes explored in the search space.
Results are given in Table 1. We observe that the algorithm is very efficient and
can be used on relatively important phylogenies within reasonable time.

Table 1. Average fraction of nodes explored in the search tree during the branch-and-
bound / Execution time (in seconds) for the 500 signed ordered phylogenies

1 inversion 2 inversions 4 inversions 8 inversions
10 leaves 1 × 10−2 / 13 2 × 10−2 / 20 6 × 10−2 / 35 0.1/51
20 leaves 3 × 10−5 / 15 8 × 10−5 / 20 2 × 10−4 / 37 2 × 10−3 / 90
40 leaves 7 × 10−11 / 17 2 × 10−10 / 24 1 × 10−9 / 39 2 × 10−8 / 112

5.2 Application on Simulated Data

We applied our algorithm on simulated data to verify how it could be used to
validate inferred phylogenies on tandemly repeated gene families. Using the sim-
ulation protocol described in the previous section, we randomly generated 500
duplication trees with 15 leaves. For each one of them we performed 0, 2, 4
and 6 inversions to obtain 4 datasets containing a total of 2,000 signed ordered
phylogenies. These are the observable states (Ttrue, O) resulting from “true” du-
plication/inversion histories. For each Ttrue, we then randomly generated two
“wrong” (but close) phylogenies Twrong, that can be obtained by applying re-
spectively one or two Nearest Neighbor Interchange rearrangements (NNI) [27].
Those “wrong” phylogenies can be seen as the ones we could obtain from bio-
logical data when a few nodes have weak statistical support. Finally, we used
our algorithm to compute the minimum number of inversions inv() necessary
in a simple duplication/inversion history to explain each (Ttrue, O) and all its
corresponding Twrong. The averaged results are presented in Table 2.

Results can be interpreted as follows. For a wrong phylogeny Twrong, 50% of
the time on average our algorithm reports an excess of inversions, otherwise it
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Table 2. Percentage of times inv(Twrong, O) is less, equal or greater than inv(Ttrue, O).
Averaged over all possible neighbors for each of the 500 phylogenies.

Trees distant from one NNI Trees distant from two NNI
inv(Twrong, O) 0 inv. 2 inv. 4 inv. 6 inv. 0 inv. 2 inv. 4 inv. 6 inv.

< inv(Ttrue, O) 0.0 0.2 0.8 1.6 0.0 0.2 0.08 1.6
= inv(Ttrue, O) 49.0 50.4 57.6 68.0 36.6 35.0 41.2 54.4
> inv(Ttrue, O) 51.0 49.4 41.6 30.4 66.4 64.8 58.0 44.0

reports the same number of inversions compared to the true phylogeny Ttrue.
Suppose that we are presented some ordered phylogenies. One is correct and the
others differ by a few NNIs. According to Table 2, for wrong trees, the algorithm
almost always reports the same number of inversions or more as in the true tree.
Thus, choosing the phylogeny with the lowest number of inversions is either
a winning strategy (roughly 50% of the time) or useless, but is almost never
misleading. Of course, this ability to discard wrong phylogenies decreases as the
true number of inversions increases.

5.3 Application on Biological Data

The KRAB-zinc finger gene family encodes for transcription factors. It contains
more than 400 active members physically grouped into clusters. In a recent
study [13], Hamilton et al. proposed a phylogeny of the primate specific ZNF91
sub-family based on their tether1 and flanking sequences. This phylogeny (ob-
tained by Neighbor-Joining [22]) contains a monophyletic group of 6 genes clus-
tered at the telomere of HSA4p, which may have been derived from a single
ancestor through successive tandem duplications.

We applied our algorithm on this cluster using the proposed phylogeny, and
found that a duplication/inversion history would require at least 4 inversions,
which seems relatively high considering that only 6 genes are involved.

To test whether a “better” phylogeny could be proposed, we used the MrBayes
software [8] to obtain a sample from the posterior probability distribution of all
possible phylogenies. The tether (+100 flanking bp) sequences were downloaded
from the Human KZNF Gene Catalog2 [15] and aligned using ClustalW [29]
with default settings. The ZNF160 tether sequence was used as an outgroup to
obtain a rooted tree. We performed 500,000 MCMC generations with MrBayes
under the GTR model [30] and a gamma-shaped rate variation with a propor-
tion of invariable sites. Convergence was easily attained and the experiment was
repeated three times with similar results. Finally we applied our algorithm on
the sampled phylogenies and observed that the best one (p=0.4) is compati-
ble with an optimal duplication/inversion history involving only two inversions.
Phylogenies are presented in Figure 3.

1 The region upstream from the first finger.
2 http://znf.llnl.gov/catalog/
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Fig. 3. Different phylogenies for the ZNF141 clade on human chromosome 4, with the
associated minimal number of inversions in a dup/inv history. The black vertical lines
represent an optimal sequence of inversions leading to the signed gene order observed on
the chromosome: (+ZNF595,+ZNF718,+L1073,−ZNF732,+ZNF141,−ZNF721). (a)
The phylogeny published in [13] requires 4 inversions, which is relatively high for
6 genes; (b,c,d) The 3 best phylogenies we obtained with MrBayes, and their associ-
ated probabilities. The first two ones require only 2 inversions, which is optimal for
this order. The position of the root was determined using ZNF160 as an outgroup.

6 Conclusion

This work represents the first attempt to account for inversions in an evolution-
ary model of tandemly repeated genes. We presented a time-efficient branch-and-
bound algorithm for finding the minimal number of inversions in an evolutionary
history of a gene family characterized by an ordered phylogeny. Though only sim-
ple duplications were considered here, the model has been shown useful to select
an appropriate phylogeny among a set of possible ones. These are encouraging
results that motivate further extensions.

The next step of this work will be to account for multiple duplications in
the evolutionary model. Another important generalization will be to consider a
family of tandemly duplicated genes with orthologs in two or more genomes. For
example, Shannon et al. [25] identified homologous ZNF gene family regions in
human and mouse. A phylogenetic tree involving such tandemly repeated genes
in human and mouse clusters was established. It would be of major interest to
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develop an algorithm allowing to explain such a phylogeny based on an evolu-
tionary model involving tandem duplication, inversion and speciation events.
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Abstract. Various international efforts are underway to catalog the ge-
nomic similarities and variations in the human population. Some key
discoveries such as inversions and transpositions within the members of
the species have also been made over the years. The task of constructing a
phylogeny tree of the members of the same species, given this knowledge
and data, is an important problem. In this context, a key observation
is that the “distance” between two members, or member and ancestor,
within the species is small. In this paper, we pose the tree reconstruction
problem exploiting some of these peculiarities. The central idea of the
paper is based on the notion of minimal consensus PQ tree T of sequences
introduced in [29]. We use a modified PQ structure (termed oPQ) and
show that both the number and size of each T is O(1). We further show
that the tree reconstruction problem is statistically well-defined (Theo-
rem 7) and give a simple scheme to construct the phylogeny tree and the
common ancestors. Our preliminary experiments with simulated data
look very promising.

Keywords: PQ tree, inversion, reversal, transposition, genome rear-
rangement, phylogeny, evolution, genealogy, common ancestor, tree con-
struction.

1 Introduction

Various international efforts are underway to catalog the genomic similarities
and variations in the human population [7, 5, 3, 36]. As the study progresses,
data in the form of genomic markers is becoming available, with due respect
to individuals’ and groups’ privacy, for public study and use. Combined with
recent discoveries of inversion and transposition within the human species, this
opens up the potential for using large scale rearrangements to reconstruct the
genealogy tree of the human population.

We first give a brief summary of discovered inversions and transpositions
within the human population and then briefly review the computational meth-
ods being used by the bioinformatics community to tackle the problem of recon-
structing phylogeny trees.
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Inversions along a chromosome are frequently observed by comparing closely
related species: for example, chimpanzee chromosome 19 and human chromo-
some 17 [13], mouse chromosome 16 and human chromosome 21 [18]. These
are generally very long inversions that are observed as reversed gene orders [24].
Moreover, with the most recent builds of the chimpanzee genome, a total of 1,576
putative regions of inverted orientation, covering more than 154 mega-bases, of
all sizes between the human and chimpanzee genomes have been observed [28].
However inversions have been seen across humans: X chromosome [33] and a
3 Mb inversion on the short arm of the Y chromosome [11]. Human inversions
occur at a low but detectable frequency. The ones that are large enough to be
detected by standard cytogenetic analysis occur at a frequency of 1-5 per 10,000
individuals [16]. The inversions across humans are of particular interest, since of-
ten the recombination in the inverted segments in heterozygotes lead to heritable
disorders [17, 12].

Secondly, inversions also have a potential for explaining the geographic dis-
tribution of the human population: a reconstruction of the prehistoric human
colonization of the planet [5,3,36]. The X-chromosome inversion is seen in popu-
lations of European descent at a frequency of about 18% [33]. Further large chro-
mosomal segment inversion have been seen in humans: [19] reports a paracentric1

inversion polymorphism spanning larger than 2.5 Mb segment in chromosome
band 8p23.1−8p22 and [14] reports a 900-Kb inversion on chromosome 17q21-31.
The second inversion is seen at the rate of 20% in Europeans and almost absent
in East Asians and rare in Africans. Also (benign) inversions at much higher
rates are seen in chromosomes 2 and 9 and an inversion in chromosome 8 is seen
more often in families of Mexican-American descent [21].

Large chromosomal rearrangement polymorphisms such as deletions or dupli-
cations are apparent by loss or gain of heterezygosity. However inversions are
difficult to detect and may go unnoticed if the inverted segment is small.

The inversions may occur in coding, non-coding, or intra-gene regions of the
chromosome. Hence a model that tracks the gene orders of the chromosome is
inadequate for modeling segment inversions. Instead, these inversions [19,14] are
being discovered and reported in terms of the order of the labeled STRP’s (Short
Tandem Repeat Polymorphisms). See Figure 1 for two instances of inversions in
the human chromosomes. Further, unlike genes, these markers are not signed
(say, as used in [4]). Also the ancestral segment is unknown, i.e. it is unclear
which order of the segment came first.

Translocations 2 have also been observed in humans [9, 10], although these
have been mostly of single genes and generally associated with a disorder. It is
1 An inversion not involving the centromere.
2 Translocation involves two nonhomologous chromosomes. Following a break and sub-

sequent reunion in each of the chromosomes, a segment of one chromosome becomes
attached to the other chromosome and vice versa. For example if chromosome 2 is
defined as g2

1g2
2g2

3g2
4 and chromosome 6 as g6

1g6
2g6

3g6
4g6

5 , after the translocation chromo-
some 2 is redefined as g1g2

2g6
4g6

5 and chromosome 6 is redefined as g6
1g6

2g6
3g2

3g2
4. This is

an example of balanced translocation. On the other hand, Robertsonian translocation
involves loss of genetic material.
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believed that as we progressively learn about individual differences, more such
variations, transpositions 3 or inversions, will surface. In fact according to [14],
these (inversions) may be only the tip of the iceberg.

D
8S

35
1

D
8S

18
25

D
8S

14
69

D
8S

54
2

D
8S

51
6

D
8S

51
72

1

D
8S

37
6

D
8S

55
0

D
8S

26
5

D
8S

16
95

D
8S

11
06

D
81

75
9

D
8S

17
55

D
8S

11
30

D
8S

17
06

D
8S

43
9

D
8S

18
19

D
8S

55
2

D
8S

30
8

K
W

30
6

(1) STRP’s on the short arm of chromosome 8
D

G
17

S3
32

D
G

17
S1

36

D
G

17
S1

37

D
G

17
S5

D
G

17
S1

1

D
G

17
S1

61

D
G

17
S1

60

D
G

17
S1

59

D
G

17
S1

58

D
G

17
S4

36

D
G

17
S1

60

D
G

17
S1

33

_ _

D
G

17
S4

35

D
G

17
S1

33

D
G

17
S4

38

D
G

17
S4

36

D
G

17
S1

58

D
G

17
S1

59

(2) STRP’s on the long arm of chromosome 17

Fig. 1. The Short Tandem Repeat Polymorphisms on two human chromosomal seg-
ments. The blocked segment shown here is inverted in a significant fraction of the
human population.

Computational Background. This summary is not exhaustive and we focus
on the work that is relevant to this paper. Loosely speaking there are two compu-
tational approaches to studying the evolutionary relationships of genomes, one
of studying the individual gene sequences and the other of studying the arrange-
ment of multiple genes on the genome. A very large amount of literature exists
for the first approach (including sequences under the character or feature model),
which we will not discuss here to avoid digression. The second approach was ini-
tiated by Sankoff [30]: the description of chromosomal inversions in Drosophila
had appeared way back in early part of last century [34]. An active interest has
been taken in the study of genome rearrangements in the last decade resulting
in some very interesting observations and debates in the community.

In the context of genome rearrangements, genomes are viewed as permutations
where each integer corresponds to a unique gene or marker. For monochromoso-
mal genomes, the most common rearrangement is inversion that is often called
reversal in the area of bioinformatics. Without loss of generality a permutation
of length n with i ≤ j, can be written as π1, the inversion on π1 defined as
rij(π1) and the transposition on π1 defined as tijk(π1) where the reversed or
transposed segment is underlined.
π1 = p1p2 . . . pi−1pipi+1pi+2 . . . pjpj+1 . . . pkpk+1 . . . pn

rij(π1) = p1p2 . . . pi−1pjpj−1 . . . pipj+1 . . . pkpk+1 . . . pn

tijk(π1) = p1p2 . . . pi−1pj+1pj+2 . . . pkpipi+1 . . . pjpk+1 . . . pn

Clearly, rij(rji(π)) = π leading to the idea of a shortest inversion path be-
tween two permutations. This shortest inversion path between π1 and π2 is the
distance between the two given as Dr(π1, π2). However, computing Dr(π1, π2)
3 Transposition is the process in which a transposable element is removed from one

site and inserted into a second site in the DNA.
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for a a given pair of permutations π1 and π2 is NP-complete [6]. Hannanhelli
and Pevzner showed that by supplementing the genes with signs, this problem
could be solved in polynomial time by using graph structures termed hurdles and
fortresses [23]: this is perhaps the most cited work in the area of computational
genome rearrangements. The central idea has been subsequently conceptually
simplified using common permutation patterns (called intervals) and PQ struc-
tures [1, 2, 37].

In sequences, the problems of (1) multiple sequence alignment and (2) the con-
struction of the implicit phylogeny tree, have been traditionally separated for
simplicity [22,20,35]. Such a distinction under the genome rearrangement model
is not so obvious. However breakpoint phylogeny was introduced by Sankoff and
Blanchette [31] to study this problem under a simplified cost function of mini-
mizing the number of breakpoints. Heuristic approaches also have been applied
to this problem in [32, 4]. A rich body of literature on inferring phylogenies un-
der the sequence or character models exists including attempts at using sequence
and distance based methods to genome rearrangement problems [15, 27].

Contributions of this paper. In this paper we present a simple computational
model of the multiple genome rearrangement problem. Since the motivation is
from ordered chromosomal segments, we deal with unsigned permutations. Fur-
ther, since the inversions and transpositions are within the same species, the
distance between the members is observed to be very small.

The central idea of the paper is based on the notion of minimal consensus PQ
tree T of permutations introduced in [29] and the fact that the number and size
of each (excluding leaf nodes) is O(1) for a small distance between permutations
(Theorem 2). We also propose an annotation scheme (called oriented PQ or oPQ
tree), that helps uniquely reconstruct the permutations from the tree. Based on
this we pose the problem as a permutation tree construction task, show that this
is statistically well-defined (Theorem 7) and propose a simple branch-and-bound
solution. The scheme produces the phylogeny tree as well as reconstructs all the
common ancestors.

Roadmap. In the next section we discuss the PQ data structure and the vari-
ants that we propose for the problem. In Section 3, we describe the permutation
tree reconstruction problem and an efficient algorithm to compute the phylogeny
tree. In Section 5 we discuss the task of including mutations in the problem model
and conclude in Section 6.

2 PQ Structures

In this section we discuss PQ structures in forms that will enable us to use them
for ancestor reconstruction. We begin with a quick overview of earlier work and
then present our modification to the PQ structure.

A PQ structure is a rooted tree with labeled leaves, whose internal nodes are
of two types: P and Q. The children of a P -node occur in no particular order
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while those of a Q-node appear in a left-to-right or right-to-left order [25]. We
designate a P -node by a circle and a Q-node by a rectangle. Two PQ trees T
and T ′ are equivalent, denoted T ≡ T ′, if one can be obtained from the other
by applying a sequence of the following transformation rules: (1) arbitrarily
permute the children of a P -node, and (2) reverse the children of a Q-node. A
frontier of tree T , F (T ), is the sequence of leaf nodes in the left to right order.
For example, in Figure 2, F (T1) = F (T2) = 0123456789. C(T ) is defined as
C(T ) = {F (T ′)|T ′ ≡ T }.

Next, consider a sequence s of length n defined on a finite alphabet Σ. A
permutation pattern p on s is defined as a set of characters σi ∈ Σ, that appear
possibly in different orders at different locations in the input [8]. For example, let
s = σ1σ4σ2σ3 . . . σ1σ2σ3σ4. Then π = {σ1, σ2, σ3, σ4} is a permutation pattern
that appears at the beginning and end of s. Π denotes a collection of permuta-
tions (patterns) πi. In [8], a notion of maximality of permutation patterns was
used (we do not reproduce the formal definition of occurrence here and instead
appeal to the reader’s intuition):

Definition 1. (maximal) [8] A permutation pattern π1 is non-maximal with
respect to π2, if each occurrence of π1 is covered by an occurrence of π2 and each
occurrence of π2 covers an occurrence of π1.

The notation for maximality was later shown to have the same structure as PQ
trees and the idea of a minimal consensus PQ tree of a collection of permutations
was introduced in [29]:

Definition 2. (minimal consensus PQ tree T (Π))) [29] Given Π, a con-
sensus PQ tree T of Π, written as T (Π), is such that Π ⊆ C(T ) and the con-
sensus PQ tree is minimal when there exists no T ′ �≡ T such that Π ⊆ C(T ′)
and |C(T ′)| < |C(T )|.
We introduce a modification to the PQ tree that will enable us to reconstruct
two permutations π1 and π2, from their minimal consensus PQ tree.

Definition 3. (oriented PQ tree, oPQ T π1(π2)) Given two permutations
π1 and π2, consider T ′ ∈ T ({π1, π2}) (Definition 2) with π1 = F (T ′)). The
oriented PQ (oPQ) tree T π1(π2) is defined by annotating T ′ as follows. Each
Q node is annotated with (−→) or (←−) labels: the (−→) label indicates that
the two segments are identical in π1 and π2 and (←−) label indicates that the
two segments are flipped. The k children of a P node are numbered by integers
1 to k denoting the order in which they appear in π2 (they appear as 1, 2, . . . , k
in π1).

Figure 2 shows an example of how an oriented PQ (oPQ) tree succinctly de-
scribes a pair of permutations. A frontier, F (T ), of an oriented tree T is simply
the in-order notation of the PQ tree excluding the labeled leafnodes, with the
orientation of the Q nodes denoted by a left or right arrow. Further, two oriented
trees T and T ′ are equivalent, denoted as T ≡ T ′, if and only if F (T ) = F (T ′).
Notice that the leaf nodes (which are labeled 0-9 in Figure 2) are ignored while
checking the equivalency of oPQ trees. The size of T , denoted as, Size(T ) is the
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T1 = T (Π1) Π1 T 1 = T π1(π2)

23

01

896745

π1 = 0123456789
π2 = 0145238967
π3 = 6723894510
π4 = 4598326701
π5 = 8923674501
π6 = 8932674501 3

0101

23 45 67 89
2 1 4

π1 = 0123456789
π2 = 0145892367

(a) F (T1)=π1=0123456789 (b) F (T 1)=
−→
Q(

−→
QP (

−→
Q

−→
Q

−→
Q

−→
Q))

Fig. 2. (a) A minimal consensus PQ tree. (b) The oPQ tree of π1 and π2. Note that
Size(T1) = Size(T 1) = 7

number of P/Q nodes. The size of T is similarly defined. See Figure 2 for an
example of frontier and size of an oPQ tree.

2.1 Algorithmic Implications

Next we explore the time to construct these oPQ trees and the following is a
direct consequence of the algorithm described in [29].

Theorem 1 ( [29]). Given two permutations π1, π2 of length n each, T π1(π2)
is unique. Also, Size(T π1(π2)) = O(n), and, it can be constructed in O(n) time.

Outline of the proof: The algorithm described in [29] constructs T ({π1, π2}), the
minimal consensus PQ tree of π1 and π2 in O(n) time. However, this can be very
simply modified to incorporate the orientation in the Q node and the order of
the children of the P node to give the oPQ tree T π1(π2). �
Recall that Dr(π1, π2) denotes the inversion distance between π1 and π2. Let
Dt(π1, π2) denote the shortest transposition path between the two and let
D(π1, π2) denote the shortest number of operations, inversion or transposition,
that takes π1 to π2. The following theorem is central to the proposed algorithm.

Theorem 2. Given a permutation π of size n and a fixed constant c, let a set
of non-equivalent oPQ trees S be defined as follows:

S = {T π(π′) | D(π, π′) = c and π′ is a permutation of size n}
Then |S| = O(1), and for each T ∈ S, Size(T ) = O(1).

Proof: We first describe the idea of reducing a permutation π (of size n) to a
blocked permutation, denoted as B(π), which a sequence of b blocks where b ≤ n.
Given a pair of permutations, the two can be converted to a sequence of blocks
as described below.

Let In be the identity permutation of size n and π1 = In with π2 renumbered
accordingly. A block is the longest consecutive run of integers, ascending or
descending, in π2. The block is numbered according to its position in π1 = In. An
ascending run block is positively signed and descending run is negatively signed.
When the number of blocks is b, then B(π1=In) = Ib = (+1)(+2) . . . (+b). The
number of blocks is the size denoted by |B(π)| and |B(π1)| = |B(π2)| = b.
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Consider the following example:

π2 = 12 3 7 6 5 4 10 11 12 9 8 13 14 15 16 =⇒ +1 -3-2 +5+4

π1 = 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 =⇒ +1 +3 +5+4+2

Thus B(π1=In) = (+1)(+2)(+3)(+4)(+5) and B(π2) = (+1)(−2)(+4)(−3)(+5).
Further, |B(π1)| = |B(π2)| = 5.

Also, T π1(π2) can be constructed from T B(π1)(B(π2))) where each leaf node
block can be replaced by a Q node with the original elements as the ordered
children of that node. For instance, in the last example, leaf node corresponding
to block 3 has three children 9, 10 , 11 in that order. Thus Size(T π1(π2)) = O(b).

Lemma 1. Given two permutations π1, π2 of length n each, if D(π1, π2) = c, a
constant, then Size(T π1(π2)) = O(1).

Outline of the proof: Let π1 = In and π2 be renumbered accordingly. Let b be
the size of the blocked permutations B(In) and B(π2). We need to estimate b
for a constant c. Consider the case c = 1. Let St=1 = {π | Dt(In, π) = 1}.
Then using Figure 3(a), it is easy to verify that |B(π ∈ St=1)| ≤ 4. Similarly, let
Sr=1 = {π | Dr(In, π) = 1}. Then, using Figure 3(b), it is easy to verify that
|B(π ∈ Sr=1)| ≤ 3. Consider the case c = 2. Let Sr=2 = {π | Dr(In, π) = 2}.
Then, using Figure 4, it is easy to verify that |B(π ∈ Sr=2)| ≤ 5. Enumerating
the cases in this manner, it can be verified that b is independent of n and only
dependent on c, which is a constant. Thus Size(Tπ1(π2)) = O(1). �

Lemma 2. Let B(π) be the blocked permutation of π of length n. Then
| {B(π) | D(In, π) = c and π is a permutation of size n} | = O(1).

Outline of the proof: This follows the lines of the proof of Theorem 2. Consider
c = 1 with transposition. Figure 3(a) shows one configuration (i.e., (+1)(+3)(+2)
(+4)) and the other possible (trivial) configurations can be obtained by deleting
one or more of blocks (say, (+3)(+2)(+4)=(+2)(+1)(+3), or, (+1)(+3)(+2)).
The number of configurations is independent of n and depends only on c. Con-
sider c = 1 with inversion. Figure 3(b) shows one configuration (i.e., (+1)(−2)
(+3)) and the other possible (trivial) configurations can be obtained by deleting
one or more of blocks (say, (−2)(+3)=(−1)(+2), or, (+1)(−2)). Thus it can be
verified that there are O(1) distinct blocked permutations for this case as well.
Thus using a case-by-case analysis it can be verified that there are only O(1)
distinct configurations when c is a constant. �

+2

+1
+1 +3+2 +4

+3 +2 +4

+1 +4

+3

Treating the blocks as symbols, the left
gives π1 = I4 = 1234 and π2 = 1324,
with T I4(π2) as shown.
Similarly, in the right, π1 = I3 = 123 and
π2 = 1(−2)3, with T I3(π2) as shown.

+2

+1 -2 +3

+3-2+1
+3+1

(a) Transposition (b) Inversion

Fig. 3. The only possible configuration for (a) one transposition, (b) one inversion
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+1 +5+2 +3 +4

(a) Blocks in the Parent

C2

+1 +1+5 +5

+2 -2-3 -3+4 -4

+1

+1

+5

+5

+2

-2

-3 +4

-4 -3

C1

C2

C1

D2

+1

+1

-2

+2

+3

+3

+4

-4

+5

+5

+1

+1

+5

+5

+4

-4

+3

+3

-2

+2

D1

D2

D1
S2

+1 +1+5 +5

-3 -3

-2 +2+4 -4

+1

+1

+5

+5

-3 -2 +4

+2 -3-4

S1

S2

S1

(b) Nested blocks (c) Disjoint blocks (d) Straddling blocks

Fig. 4. (a) The parent sequence blocks. The only three possible configurations of two
inversion operations are shown in (b)-(d). (b) The two blocks, marked 3 and 2-4 on the
parent are nested. Labeling the two resulting permutations as C1 and C2, the first is
T C1(C2) (labeled as C1) and the second is T C2(C1) (labeled as C2). (c) The two blocks
marked 2 and 4 on the parent are disjoint. Labeling the two resulting permutations
as D1 and D2, the first is T D1(D2) (labeled D1) and the second is T D2(D1) (labeled
D2). (d) The two blocks, marked 2-3 and 3-4 on the parent, straddle. Labeling the two
resulting permutations as S1 and S2, the first is T S1(S2) (labeled S1) and the second
is T S2(S1) (labeled S2).

Back to the proof of Theorem 2. For a given permutation π, the number of distinct
blocked permutations of π′, at distance c from π is only O(1) by Lemma 2. Each
distinct blocked permutation can possibly lead to a distinct oriented PQ tree.
Thus the number of such trees is O(1). And, by Lemma 1, each tree is of size
O(1). �

2.2 Ancestor Reconstruction Through oPQ Templates

Let the parents of a set of permutations Π , denoted by Pc(Π) be defined as
follows: (π′ �∈ Π) ∈ Pc(Π), is a permutation such that for each π ∈ Π , D(π, π′) ≤
c for some integer c ≥ 0. Consider the task of computing Pc(Π) where Π =
{π1, π2}. If D(π1, π2) = c, then for each π ∈ Pc(Π), D(π1, π) = ci and D(π2, π) =
c − ci, for some 0 ≤ ci ≤ c. We first estimate |Pc(Π)| in the following theorem.

Theorem 3. Given π1 �= π2, and a constant c, |Pc(π1, π2)| = O(1).

Outline of the proof: The above is a direct consequence of Theorem 2: the parents
can be computed from distinct configurations which are O(1) in number. Further
each can give rise to only O(1) parents, hence the result. �
We next consider the task of reconstructing parent (ancestor) permutations.
We do this by computing the oriented minimal consensus PQ trees of a pair of
permutations π1 and π2 and comparing to oPQ templates. In Figures 3, 4, and
7 treating the blocks as new symbols, we can construct the consensus oPQ trees
as illustrated.

Definition 4. (oPQ template T π1(π2)) An oPQ template is an oPQ tree
where each internal node has at most one leaf node. Each leaf node is labeled
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T C(D) T A(B)
A = 0234516789
B = 0154326987
C = 0678321549
D = 3210678549
H = 0154326789
z = 0234516987

549

0678 321 0 23451 6 789

P1({C, D}) = φ P1({A, B}) = {H, z}
(a) (b) (c)

Fig. 5. (a) The permutations and their labels. The oPQ tree T C(D) in (b) do not
match any templates. However the oPQ tree T A(B) in (c) matches template D1 (or
D2) of Figure 4. Consider one of the matches: the first three blocks, marked +1, +2
and +3 (0, 23451, 6) are placed in the same order and the fourth block, marked -4
(789) is reversed giving a parent z = 0234516987.

with a signed number i where it represents the ith block in π1. A plus sign indi-
cates that the block is identical in π1 and π2. A minus sign indicates that it is
flipped in π2.

We illustrate oPQ templates in Figure 4: we show the only possible three cases.
Since the oPQ’s T can be mechanically compared to the consensus oPQ trees
of the given permutations, these are called templates. T π2(π1). We next give an
overview of the use of an oPQ template through two examples in Figure 5(a-c).
Thus the template can be used to reconstruct a common parent.

Space constraints, the algorithmic details of the template matching will be
presented in the full version of the paper.

3 The Permutation Tree Construction Problem

Given a collection Π of members where each is defined by a sequence of markers,
it is a natural question to reconstruct the phylogeny (“evolutionary”) tree.

Definition 5. (permutation tree T ) Given Π a collection of m permutations on
integers 1, 2, . . . , n, let T (V, E) be a labeled tree where each node v ∈ V is labeled
by a permutation on integers 1, 2, . . . , n denoted as π(v). Let V ′ = {(v ∈ V ) |
π(v) ∈ Π}. T (V, E) is a permutation tree on Π if the following conditions hold:
(1) Each v ∈ V ′ is labeled bijectively by the elements of Π, (2) for each leaf node
l ∈ V , π(l) ∈ Π, (3) for each (v1v2) ∈ E, π(v1) �= π(v2) and (4) an internal
node v that has degree < 3, must be such that π(v) ∈ Π (no linear chains in the
tree, except when each v in the chain is given i.e., π(v) ∈ Π).

Notice that the extant member can also be at an intermediate node of the tree
unlike in most evolutionary tree construction problems [22] where the extant
members can only appear as leaf nodes. Also this permutation tree is unrooted.
Further, let the length of the permutation tree T (V, E) be defined as

Len(T ) =
∑

(v1v2)∈E

D(π(v1), π(v2))
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Problem 4. (Permutation Tree Construction -PTC- Problem) Given Π, a col-
lection of m permutations of length n each, the PTC problem is to construct the
permutation tree T (V, E) of minimum length.

It is unclear if this problem has a polynomial time solution. Perhaps a natural
restriction is to use signed permutations, instead of unsigned ones, since there
exist polynomial time algorithms to compute Dr(π1, π2) [23, 26]. However, it is
unclear how the common ancestors can be computed on the phylogeny tree and
heuristic methods have been proposed in literature for this problem [32,4]. Since
our problem is motivated by STRP’s on human chromosomes, it is reasonable
to assume that for each (v1v2) ∈ E of T (V, E), D(π(v1), π(v2)) ≤ c, for some
tiny constant c. We call this the cPTC problem and show that finding the exact
solution to the problem is computationally tractable.

Problem 5. (The cPTC Problem) The PTC problem with the added constraint
that for each (v1v2) ∈ E, D(π(v1), π(v2)) ≤ c, for some small constant c.

Notice that the problem definition allows for multifurcating trees. If the permu-
tation tree exists, then Π is said to be compatible. If no such tree exists, the
harder problem is to modify Π to make it compatible.

Problem 6. (The near-cPTC Problem) Given Π = {π1, π2, . . ., πm}, the near-
cPTC problem is to minimize

∑m
i=1(D(πi, (π′

i ∈ Π ′)) such that Π ′ is compatible.

We claim that the PTC is a reasonable definition of the problem by proving that
a randomly generated Π is seldom compatible. We first state two lemmas that
lead to the theorem.

Lemma 3. Given a permutation π of length n, |{(π′ �= π) | D(π′, π) = 1}| < nq,
for some constant q.

It is easy to verify that q = 2 for the inversion operation and q = 3 for the
transposition operation.

Lemma 4. Let Πi, 1 ≤ i ≤ k, be k sets of independently chosen random per-
mutations. If πi ∈ P1(Πi) then each πi is independent of πj, i �= j.

Theorem 7. Given a random collection Π of m permutations of size n each,
the expected number of permutation trees on Π is o(1).

Outline of the proof: Using Lemma 3 we compute the following probability where
q is some constant:

P(π is the immediate parent of some π1 and π2) =
nq

n!2

Given a tree T with m leaf nodes, the probability PΠ(T ) of it being a permu-
tation tree on Π , PΠ(T ) =

(
nq

n!2
)m

by Lemma 4. Further, N , the number of
possible trees configurations is (this is the number of strictly bifurcating trees
on m leaves and is a lower bound on all possible trees):

N ≤ (2m − 4)!
2m−2(m − 2)!
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By linearity of expectation, the expected number of trees on Π is bounded by
NPΠ(T ), which is o(1) since m ≤ n!. �
Algorithm. We next give a branch and bound algorithm to solve the cPTC
problem (see Problem 5) using oPQ templates (trees). Due to space constraints,
the details will be presented in the full version of the paper.
Input: Π , a set of m permutations of size n each.
Output: A minimum length tree T (V, E) and a mapping P : (v ∈ V ) → Π∗,
sending (v ∈ V ) �→ (π ∈ Π∗), where Π ⊂ Π∗.

4 Experiments

Here we present the results of a set of preliminary experiments. For comparison
purposes, the reference rooted phylogeny tree, Tr, is fixed for 50 experiments. We
used two reference trees, one a bifurcating and the other a multi-furcating whose
exact topology is shown in Figure 6. Each has 16 leaf nodes and the first has 15
and the second has 10 internal nodes. The branch and bound algorithm is used
to construct the tree and the oPQ templates used are shown in Figures (4),(3)
and (7).

To generate an experiment, we start with a sequence of length 200. This is
deemed to be the root node. We follow the topology of Tr and produce children
of the node by randomly selecting a segment of length 5 to 15 for an evolution-
ary event. This event is either a transposition or an inversion. For the former,
yet another location in the sequence is chosen randomly (also no two children
of a node have transpositions). To construct a data set Π , we collect all the 16
leaf nodes and randomly pick 4 to 7 of the internal nodes. In 4 experiments we
found that Π admitted multiple phylogenies with up to 3 trees, in the bifurcat-
ing phylogeny. In the multifurcating tree Π admitted multiple phylogenies in 6
experiments with up to 4 trees.

Hot spot based model: In a variation to the model, we marked multiple (8
to 12) segments in the sequence as hot pot regions. Zero or one evolutionary
event was introduced (picked at random with equal probability) in each of the
hot spot segments. The data set Πi is generated for each hot spot region i by
yanking subsequences of length 20 around the regions (thus they are no longer
strict permutations). Notice that for the same experiment (i.e the same reference
Tr tree) sometimes |Πi1 | �= |Πi2 |, for i1 �= i2, depending on absence/presence
of evolutionary events in that region. We compute a phylogeny tree Ti for each
region i and construct a consensus tree to obtain the resulting phylogeny tree.
In 44 of the 50 experiments we constructed a correct phylogeny tree in the
bifurcating phylogeny and in 41 of the 50 experiments in the multifurcating
phylogeny.

Noisy data: In yet another variation, we introduce random noise to the data.
We experiment with four scenarios: (a) inserting and/or deleting random po-
sitions, (b) inserting random segment of size from 2 to 7, (c) deleting random
segments, and, (d) a combination of (b) and (c). The number of trees that are
correct out of the 50 are tabulated below.
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(a) (b) (c) (d)
Bifurcating 39 35 31 28
Mulitfurcating 36 28 30 26

Handling missing or spurious data requires extra care and we are looking into
probabilistic methods of incorporating this into the model.

(a) bifurcating Tr (b) multifurcating Tr

Fig. 6. The topology of the reference trees in the simulation experiments
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Fig. 7. In (a) and (c) the parent block is (+1)(+2)(+3)(+4)(+5)(+6) and in (b) and
(d) parent block is (+1)(+2)(+3)(+4)(+5)(+6)(+7). Two permutations, S1 and S2,
each at exactly one inversion and one transposition distance respectively from the
parent. In each, the oPQ template T S1(S2) is displayed with label S1.
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5 Mutations

We will assume that the permutation on the markers will also include the specific
allelic form it represents, i.e., say the copy number in case of micro satellites and
the nucleic acid base in case of SNP’s (Single Nucleotide Polymorphism). Let
Da(π1, π2) denote the number of markers that differ in their allelic form. For
example, if π1 = 1a2a3b4c5a, π2 = 1a3a2a5c4c, where the superscript denotes an
encoding of the allelic form, then Da(π1, π2) = 2 since markers 3 and 5 vary in
their allelic forms.

The proposed approach can be extended to include mutations and we are
currently exploring this direction. In fact, in practice, the problem may be sim-
plified by the use of mutations since, this will help time-order the events. We
propose a two-step approach to the problem: first reconstruct the phylogeny
tree without using mutations. In the second step the tree can be resolved using
the mutation information. The reason for taking this two-step approach is that
the assumption that Da() is small is no longer valid under mutations. We are
currently experimenting on synthetic data to validate this approach.

6 Conclusion

Here we present a systematic way of studying large scale genome rearrangements
to construct a phylogeny tree. The problem is motivated by the discoveries of
large number of inversions and transpositions within the human population.
The approach is based on our earlier work on computing minimal consensus PQ
trees of permutations along with the observation that when the edit distances
are small, only O(1) number of PQ trees of size O(1) each need to be considered.
This gives an efficient algorithm to compute the underlying phylogeny tree and
the reconstruction of all the common ancestors. Our preliminary experiments on
simulated data show promising results.
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Abstract. We used whole-genome sequence alignments of human, mouse, rat, 
and dog to perform a genome-wide analysis of intron loss and gain events in 
over 17,000 mammalian genes. We found no evidence for intron gain and 122 
cases of intron loss, most of which occurred within the rodent lineage. Majority 
(68%) of the deleted introns were extremely small (<150 bp), significantly 
smaller than average. The intron losses occurred almost exclusively within 
highly expressed, housekeeping genes, supporting the hypothesis that intron 
loss is mediated via germline recombination with spliced mRNA intermediates. 
This study constitutes the largest scale analysis for intron dynamics in 
vertebrates to date and allows us to confirm and extend several hypotheses 
previously based on much smaller samples.  

Keywords: comparative genomics, gene structure, introns, mammalian evolution. 

1   Introduction 

Reconstructing the evolutionary history of spliceosomal introns remains one of the 
most fervently debated topics in eukaryotic evolution. The long-standing debate over 
introns early versus introns late [1, 2] contrasts the ideas of introns either originating 
in the early RNA world, or evolving from an expansion of Type-2-like self-splicing 
introns in an early eukaryotic ancestor [3]. Understanding the natural history of 
introns is essential to understanding their function: are introns simply selfish DNA 
elements that have been maintained in large genomes akin to retrotransposons, or do 
they serve a function, such a permitting exon shuffling, and alternative splicing, 
resulting in increased proteome complexity? 

Evolutionary investigations of the dynamics of intron gains and losses are 
generally hampered by the limited availability of high quality data on the sequence 
and structure of gene orthologues from diverse species. To date, we have been unable 
to utilize the entire gene complements of most organisms in question, and the datasets 
commonly used range from hundreds [4] to at most one thousand genes [5].  

Here, we make use of the complete, high quality genomic sequences of four 
mammalian species: human, mouse, rat, and dog, to investigate intron gain and loss 
dynamics in mammals. We utilize a gene mapping technique to map annotated 
reference human genes onto the genome-wide, multi-species sequence alignments, 
allowing us to investigate the predicted intron-exon boundaries of 152,146 introns 
within 17,242 autosomal genes. A recent study which considered a much smaller 
number of mammalian genes [5] uncovered 6 differences in intron positions between 
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human and rodents, and suggested that there is no evidence for intron gain, and a very 
slow rate of intron loss in mammals. Here, we detect over 100 cases of intron loss and 
still no evidence for any intron gain during mammalian evolution. Our large sample 
size allows us to determine the relative rates of intron losses in mammalian lineages 
and characterize the types of introns and genes that appear susceptible to loss. 

2   Materials and Methods 

DNA Sequences and Interspecies Alignments. We used the RefSeq annotation of 
the human genomic sequence to extract coding sequences of human genes [6]. Only 
the sequences which could be in silico translated into their predicted protein were 
retained. This strategy resulted in a high confidence, non-redundant dataset of 17,242 
human autosomal genes, containing 152,146 distinct introns within their coding 
sequence. We based our analysis on the four available highest-quality mammalian 
genome assemblies: human (hg17), mouse (mm7), rat (rn3), and dog (canFam2).  We 
mapped the well annotated human genes onto the genome-wide alignments present 
within the 17-way MultiZ [7] alignment tracks in order to determine the intron-exon 
structures in the target species. We considered only introns that were flanked by 
coding, or partially coding, exons, since non-coding UTR sequences are poorly 
conserved (and often not conserved) among species, and provide poor anchors for 
detecting splice sites within alignments. We also performed the reverse analysis by 
mapping a set of 16,068 mouse RefSeq genes (129,336 CDS introns) onto the mouse 
vs. human genomic sequence alignments. 

We used the following criteria to detect intron loss events in the target sequence (or 
gain in the reference sequence): 1) for each reference species intron we identified the 
positions of both the donor and acceptor splice sites; 2) within the target species, we 
flagged an intron as potentially lost if the distance between the donor and acceptor 
sites was lower than a predetermined cutoff, which in the final analysis we set as 25 
bp. The latter condition was necessary since alignments are often imperfect at the 
exon-intron boundary (Figure 1). Especially in the case of intron loss events, the last 
two base pairs of an exon, which have an AG consensus, tend to align with the 
downstream intronic acceptor site (also AG), and more serious misalignments are also 
common. Nevertheless, allowing a margin of 25 bp did not introduce any false 
positive results (as manually verified in the final curated results), since sequences 
shorter than 25 bp cannot be efficiently spliced in mammals [8] and correspond to 
imperfect alignments, rather than actual introns. 

Since the genome assemblies and the resulting alignment contain numerous 
sequencing, assembly, and alignment artifacts, all potential intron loss events were 
further filtered based on the quality of the underlying alignment. In the process of 
constructing the BlastZ alignments, gaps in the sequences may be filled in using 
secondary (non-syntenic) sequences. This significantly increases the proportion of 
aligned sequences but also results in an increased probability of introducing alignment 
errors. Thus, only potential intron loss cases which mapped to the highest confidence, 
top, syntenic, long (encompassing several neighboring genes) nets [9] were retained 
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for further analysis. Cases occurring in genes which were aligned to multiple or non-
syntenic portions of target genomes, which could potentially constitute alignments to 
duplicate genes or pseudogenes, were rejected.  

For all candidate intron losses, we extracted the sequence of 100 bp flanking the 
intronic site from the genomic sequence assembly and used ClustalW [10] with high 
gap opening penalty (80) and low gap extension penalty (0) to align it to the human 
intron-containing sequence, and visualize the detailed evidence for intron loss. After 
performing some minor supervised adjustments, mainly correcting the misalignment 
of the terminal AG of an upstream exon with the downstream acceptor site (see 
above), this allowed us to confirm the deletion events and demonstrate that essentially 
all of the events are cases of exact deletion, with no alteration to the coding sequence. 

Characterization of Genes Involved in Loss Events. In order to functionally 
classify the genes involved in intron loss events, we used the EASE [11] interface to 
the Gene Ontology annotation. We identified the GO categories with the highest 
support – lowest EASE score – for over-representation by the genes within our list, as 
compared to all known genes. 

In order to approximate expression levels and expression breadth of the genes, we 
used microarray expression data from SymAtlas [12]. Although the relevant variable 
is the expression level in the germline, this information is currently not available. As a 
proxy for gene expression levels, we used the mean values of gcRMA summaries 
across all tissues studied. As an estimate of expression breadth, we used the 
present/absent calls from the MASS 5.0 summaries and, for each gene, calculated the 
percentage of tissues where expression was detected. 

3   Results 

We used the mapping of annotated human exon-intron boundaries onto the mouse, rat 
and dog genomes to detect changes in gene architecture that occurred during the 
evolution of the four mammalian species. This approach makes use of the highest 
quality gene annotation (17242 human genes), but it allows us only to detect either 
intron loss events that occurred in rodent and dog, or intron gain events that occurred 
in the human lineage.  Thus, we also used the reverse approach: mapping known 
mouse genes onto mouse/human whole genome alignments. The latter strategy results 
in a slightly smaller dataset (16068 mouse genes) but allows us to detect intron losses 
in the human, and intron gains in the mouse genome. This method allowed the 
mapping of 146964, 141942 and 146727 splice site pairs from human genes to the 
mouse, rat and dog genomes respectively and 124474 from mouse genes onto the 
human genome.  The results of the combined analyses are listed in Tables 1 and 2. 
The name and symbol correspond to the human RefSeq gene where the loss/gain 
event occurred, except for the events in human, where the symbol refers to the mouse 
gene. The length for dog, mouse and rat events is the length of the corresponding 
intron in human.  For human events, the length is that of the corresponding intron in 
mouse. We divided the results into isolated events (Table 1), i.e. those where a single 
intron gain/loss event (or multiple non-consecutive events) occurred in a gene, and 
concerted events (Table 2) where the change involved multiple successive introns 
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from the same gene. We propose that the single and multiple events may be mediated 
by slightly different mechanisms (see Discussion), and the two classes were 
henceforth analyzed separately.  

Table 1. Independent Intron Deletions   

RefSeq Pos Size Loss Symbol 

NM_012207 7 275 Dog HNRPH3 

NM_025234 6 238 Dog WDR61 

NM_018445 4 96 Dog SELS 

NM_032259 8 89 Dog WDR24 

NM_004104 42 76 Dog FASN 

NM_025241 8 86 Dog UBXD1 

NM_002096 8 75 Dog GTF2F1 

NM_182752 1 150 Mouse FAM79A 

NM_003132 5 84 Mouse SRM 

NM_006600 5 94 Mouse NUDC 

NM_007122 9 245 Mouse USF1 

NM_004550 6 261 Mouse NDUFS2 

NM_153188 16 130 Mouse TNPO1 

NM_001090 10 96 Mouse ABCF1 

NM_007355 7 204 Mouse HSP90AB1 

NM_138419 6 5966 Mouse FAM54A 

NM_007189 4 82 Mouse ABCF2 

NM_006421 11 112 Mouse ARFGEF1 

NM_001273 39 175 Mouse CHD4 

NM_006191 8 81 Mouse PA2G4 

NM_004184 8 703 Mouse WARS 

NM_001376 67 95 Mouse DYNC1H1 

NM_014030 13 71 Mouse GIT1 

NM_002230 9 196 Mouse JUP 

NM_002805 5 81 Mouse PSMC5 

NM_020695 14 85 Mouse REXO1 

NM_001961 7 359 Mouse EEF2 

NM_020230 10 82 Mouse PPAN 

NM_001379 37 268 Mouse DNMT1 

NM_005498 4 113 Mouse AP1M2 

NM_032377 2 200 Mouse ELOF1 

NM_000516 9 104 Mouse GNAS 
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Table 1. (continued) 

NM_001670 5 968 Mouse ARVCF 

NM_020755 6 133 Mouse SERINC1 

NM_003086 16 179 Mouse SNAPC4 

NM_002046 4 129 Mouse GAPDH 

NM_005216 9 123 Rat DDOST 

NM_014409 4 7100 Rat TAF5L 

NM_003400 14 85 Rat XPO1 

NM_016516 19 114 Rat VPS54 

NM_001747 9 579 Rat CAPG 

NM_005911 8 635 Rat MAT2A 

NM_014670 7 139 Rat BZW1 

NM_004953 18 125 Rat EIF4G1 

NM_006859 5 82 Rat LIAS 

NM_018115 18 108 Rat SDAD1 

NM_017676 5 99 Rat FLJ20125 

NM_002198 4 109 Rat IRF1 

NM_004381 8 813 Rat CREBL1 

NM_007355 5 136 Rat HSP90AB1 

NM_015153 6 81 Rat PHF3 

NM_000971 4 111 Rat RPL7 

NM_018449 20 716 Rat UBAP2 

NM_001001973 5 111 Rat ATP5C1 

NM_003591 13 104 Rat CUL2 

NM_018237 22 95 Rat CCAR1 

NM_003375 5 88 Rat VDAC2 

NM_001011663 2 87 Rat PCGF6 

NM_005146 11 92 Rat SART1 

NM_006842 20 102 Rat SF3B2 

NM_002898 8 179 Rat RBMS2 

NM_013449 26 115 Rat BAZ2A 

NM_007062 4 100 Rat PWP1 

NM_002271 19 89 Rat RANBP5 

NM_002271 23 84 Rat RANBP5 

NM_007111 6 604 Rat TFDP1 

NM_002892 20 217 Rat ARID4A 

NM_207661 13 1030 Rat FLJ11806 

NM_020990 4 129 Rat CKMT1B 



 Intron Loss Dynamics in Mammals 161 

Table 1. (continued) 

NM_005926 5 101 Rat MFAP1 

NM_005881 9 80 Rat BCKDK 

NM_000546 6 568 Rat TP53 

NM_001961 13 80 Rat EEF2 

NM_001961 11 1156 Rat EEF2 

NM_182513 3 118 Rat SPBC24 

NM_001436 3 86 Rat FBL 

NM_032034 4 80 Rat SLC4A11 

NM_181801 4 108 Rat UBE2C 

NM_007098 26 4829 Rat CLTCL1 

NM_014303 5 91 Rat PES1 

NM_001379 36 797 Rat DNMT1 

NM_001469 4 264 Rat XRCC6 

NM_024319 1 84 Rodent C1orf35 

NM_016252 7 77 Rodent BIRC6 

NM_014763 1 191 Rodent MRPL19 

NM_145212 5 383 Rodent MRPL30 

NM_006773 6 85 Rodent DDX18 

NM_012290 15 82 Rodent TLK1 

NM_001090 16 142 Rodent ABCF1 

NM_022551 3 81 Rodent RPS18 

NM_001634 6 291 Rodent AMD1 

NM_001010 5 105 Rodent RPS6 

NM_004357 8 104 Rodent CD151 

NM_015104 5 129 Rodent KIAA0404 

NM_020680 3 80 Rodent SCYL1 

NM_000920 14 492 Rodent PC 

NM_001166 2 94 Rodent BIRC2 

NM_002046 3 90 Rodent GAPDH 

NM_002046 6 92 Rodent GAPDH 

NM_053275 3 104 Rodent RPLP0 

NM_001312 2 89 Rodent CRIP2 

NM_001003 3 140 Rodent RPLP1 

NM_002952 4 79 Rodent RPS2 

NM_024860 2 72 Rodent SETD6 

NM_024805 2 619 Rodent C18orf22 
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Table 1. (continued) 

NM_002819 4 83 Rodent PTBP1 

NM_002695 3 803 Rodent POLR2E 

NM_003938 13 70 Rodent AP3D1 

NM_020170 8 428 Rodent NCLN 

NM_003685 12 104 Rodent KHSRP 

NM_032285 1 150 Rodent MGC3207 

NM_003333 4 84 Rodent UBA52 

NM_015965 4 236 Rodent NDUFA13 

NM_000979 5 132 Rodent RPL18 

NM_005560 68 83 Rodent LAMA5 

NM_033405 10 97 Rodent PRIC285 

NM_008084 5 85 Human LOC14433 

NM_145370 4 86 Human Gps1 

NM_031170 7 263 Human Krt2-8 

NM_027350 3 112 Human Nars  

Table 2. Multiple Consecutive Intron Deletions 

RefSeq  Pos. Size Loss Symbol 

NM_012311 11 3747 Rodents HsKin17 

NM_012311 10 2466 Rodents HsKin17 

NM_012311 9 1166 Rodents HsKin17 

NM_012311 8 2261 Rodents HsKin17 

NM_012311 7 3112 Rodents HsKin17 

NM_012311 6 5485 Rodents HsKin17 

NM_012311 5 859 Rodents HsKin17 

NM_012311 4 3038 Rodents HsKin17 

NM_005926 3 256 Mouse MFAP1 

NM_005926 2 2154 Mouse MFAP1 

We were able to uncover a total of 122 changes: 4 occurring in human, 30 in 
mouse, 46 in rat, 35 in the rodent lineage, prior to the mouse/rat divergence, and 7 in 
dog. Remarkably, all of the changes were consistent with an intron loss, rather than a 
gain, i.e. for each case of a deletion of an intron relative to the reference gene 
structure (either mouse or human), the annotated intron was present in an earlier 
diverged organism. The loss of each intron was verified by using dog as the outgroup 
for changes occurring in human, mouse or rat, and using chicken as the outgroup for 
changes occurring in dog.  
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Figure 1 shows an example of an intron missing in rodents displayed in the 
vertebrate MultiZ alignment track of the UCSC genome browser.  This case illustrates 
common misalignments close to the splice sites, which is the reason we had to allow 
for a 25 bp window when finding the homologous splice sites. To confirm each loss 
event, we extracted the original genomic sequences from the assemblies and used 
ClustalW to re-align the reference species intron and 100 bp of flanking upstream and 
downstream sequences with the homologous target species region. Our analysis 
shows that at least 117 of the detected intron losses are exact. The remaining 3 cases 
are also likely to be exact losses but fall into regions of relatively poor quality 
genomic sequence and require single base insertion/deletion events in the alignments.  

 

Fig. 1. Genome Browser multi-species alignments from the UCSC website for the DDX18 
intron lost in rodents.  Uppercase, boxed sequences correspond to exons.  

Rates of Intron Loss/Gain. We find a very low rate of intron loss throughout the 
mammalian evolution and no evidence for intron gain.  Based on the total number of 
donor/acceptor splice site pairs identified in the alignments, we determined the rates 
of intron loss per million years per intron as: 5.32•10-6 for the mouse-rat common 
ancestor, 6.58•10-6 for mouse, 1.08•10-5 for rat, 5.30•10-7 for dog and 4.28•10-7 for 
man.  These estimates assume that human and dog lineages diverged 95 MYA, human 
and rodent 75 MYA [13], and mouse and rat 30 MYA [14, 15].  In order to assess 
whether the rates are proportional to generation time, we used the age of sexual 
maturity of each organism – 1/6, 1/3, 3, and 12 years for mouse, rat , dog and man, 
respectively – to calculate a Pearson correlation coefficient.  Although, the relevant 
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generation time is that of the ancestral species in which the deletions actually 
occurred, but it is reasonable to assume that the average generation time of a specific 
lineage should be proportional to that of its descendant species. We obtain a negative 
correlation of -0.71 (p [one-tailed] = 0.15), as we would expect. This correlation is not 
significant possibly because there are not enough species in the analysis. It is also 
possible that generation time is not the only factor affecting the rate of intron loss. 
Other possible factors may include the effective population size of each lineage, 
which could lead to differences in the probabilities of fixation of the changes. 

Sizes of Deleted Introns. One of the most striking characteristics distinguishing the 
deleted introns from the norm was their extremely small size.  The average size of a 
human intron is 6259 bp, while the deleted cases were on average 355 bases long in 
human. Figure 1 illustrates the difference in size distribution of deleted introns and 
that of all introns.  The difference in the distributions is highly statistically significant 
as measured by a two-sample t-test assuming unequal variance (t = 57.3, df = 208, p 
[two-tailed] < 10-10).   Most of the deleted introns (78 out of 116) are smaller than 150 
bases. We further investigated five cases of unusual intron deletions that exceeded 
1000 bp in length (5968, 7100, 1030, 1158, and 4380 nucleotides in genes FAM54A, 
TAF5L, FLJ11806, EEF2, CLTCL1, respectively). Four of those cases occurred in 
the rat lineage and one in mouse. We identified the corresponding intron in the closest 
relative (mouse, when the loss occurred in rat, and vice versa) and observed that the 
introns in the closest relative were actually considerably shorter than in human (984, 
4902, 224, 134, and 79 bases respectively) and hence were likely to be short at the 
time of the deletion. This suggests that the size of the intron must be an important 
factor affecting the underlying molecular mechanism of deletion. 

Distribution of intron sizes compared 
to all introns
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Fig. 2. Log- size distribution of deleted introns versus all introns 
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Intron Phases. Introns can be classified as phase 0 (inserted between two codons), 
phase 1 (after the first base of a codon), or phase 2 (after the second base). We 
examined the phase distribution of the 116 deleted introns from Table 1 and compared 
it to the phase distribution of all introns from the RefSeq dataset. The proportions for 
the deleted introns were 0.52, 0.26 and 0.22 for phases 0, 1 and 2 respectively, while 
the ratios for the control were 0.46, 0.32 and 0.22. The distribution of phases did not 
differ significantly from the expected ( 2 = 2.24, df = 2, p = 0.33). 

Positions of Deleted Introns within Genes. We wanted to assess whether intron 
deletions occurred preferentially to one half of the gene.  To organize each event as 
belonging to the 5’ or 3’ half of the gene, we divided the number of the intron (see 
table 1) – excluding introns in UTR regions since these were not included in our 
analysis – by the total number of introns in the gene in order to obtain a fraction. 
Assuming a null uniform distribution for the positions of deleted introns, we used a 2 
analysis to compare the proportion of deleted introns that fell in each half of the gene.  
We found that the distribution of deleted introns was significantly skewed toward the 
3’ half of the gene ( 2 = 7.76, df = 1, p = 0.0053).  

Splice Site Characteristics. We examined the distributions of bases around both 
splice sites and compared to the distributions for all introns.  We found that the 
consensus at the 5’ splice site was not significantly different from the control.  
However, at the 3’ splice site, the two positions after the AG splice site had a 
significantly greater frequency of the bases G ( 2 = 3.82, df = 1, p = 0.05) and T ( 2 = 
4.93, df = 1, p = 0.03), respectively. 

Expression and Ontology. We used the EASE [11] interface to classify our genes 
into GO categories (biological process and by cellular component) and characterize 
the types of genes that undergo intron deletion events. EASE can be used to calculate 
over-representation statistics for each GO category (using an EASE score, defined as 
the upper bound of the Jackknife Fisher exact probability distribution). In Table 3, we 
list the most over-represented biological processes (EASE score < 0.05). We note that 
most of the genes with intron deletions are involved in biosynthesis, metabolism, 
translation, transcription, and RNA processing. Almost all of the overrepresented 
categories correspond to ubiquitous, housekeeping functions, suggesting that intron 
deletion events occur predominantly in genes that are both highly expressed AND 
expressed in the germline. In order to further confirm this hypothesis, we utilized 
microarray expression data available from SymAtlas [12] to determine the expression 
intensities and breadths of the candidate genes. Since germline gene expression levels 
are not known, we used averaged gcRMA (robust multi-array analysis, normalized for 
GC content) expression over all tissues as a proxy for germline expression, and 
compared the averages of the intron-deleted sample to all genes.  The mean gcRMA 
expression level was of 952 overall, and significantly higher, 9560, for the genes with 
an intron deletion, as confirmed by a two-sample t-test assuming unequal variance (t 
= -4.3, df = 108, p [two-tailed] = 3.58•10-5).  In order to study the breadth of 
expression, we used MASS 5.0 present/absent calls from more than 300 tissues and 
cell lines and determined the fraction of tissues where expression was positively 
detected (present). Again, we compared the expression breadth for genes with intron 
deletions (mean = 0.54) to that of all genes (mean = 0.26) and found a highly significant 
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difference using the same t-test (t = -6.9, df = 92, p [two-tailed] = 7.15•10-10). Thus 
intron deletions occur preferentially in genes with housekeeping functions, which have 
experimentally been determined to be both highly and broadly expressed. 

Table 3. Over-represented GO Biological Processes (99 genes categorized in our list as 
compared to  13802 genes for the control) 

GO Biological Process List Hits Population Hits EASE Score 

protein biosynthesis 19 650 6.17E-07 

biosynthesis 26 1199 6.37E-07 

macromolecule biosynthesis 22 1002 5.69E-06 

metabolism 75 7637 2.68E-05 

translation 9 236 0.000272 

Pol II promoter transcription 12 477 0.000557 

nucleic acid metabolism 38 3429 0.003043 

RNA processing 10 430 0.00346 

RNA metabolism 10 460 0.005365 

protein metabolism 31 2696 0.005747 

nucleocytoplasmic transport 5 108 0.007294 

spermine biosynthesis 2 2 0.014151 

translational elongation 3 27 0.015607 

spermine metabolism 2 3 0.021152 

spermidine metabolism 2 3 0.021152 

spermidine biosynthesis 2 3 0.021152 

intracellular transport 10 613 0.02996 

transcription 26 2426 0.030485 

polyamine biosynthesis 2 7 0.048667 

Case Study: GAPDH. We performed a detailed analysis of the GAPDH gene, where 
we found evidence of multiple, independent intron losses occurring in mouse, human, 
and rat. GAPDH is known to be very highly expressed, which follows the premise 
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that expression in the germline is essential for intron loss.  We extracted genomic and 
mRNA GAPDH sequences for 15 vertebrate species, and used multiple alignments to 
reconstruct the intron/exon structure of the gene in each species (Figure 2). A Dollo 
parsimony approach (assuming a single appearance of the derived character – intron) 
suggests that there were no gain events throughout vertebrates, but numerous losses, 
including several independent losses of the same intron (intron 9 of the ancestral 
gene). The result also suggests that the phenomenon of intron loss in vertebrates (at 
least within this gene) may be accelerated in the mammalian branch. 

1 2 3 4 5 6 7 8 9 10

9

9

8

2, 5
3

7, 9

4

 

Fig. 3. The evolution of the intron-exon structure of the GAPDH gene throughout the vertebrate 
phylogeny.  The numbers on the branches indicate the inferred deletion events.  The introns are 
numbered according to their position within the ancestral gene.  

4   Discussion 

We identify over 100 cases of intron loss in the four examined mammalian species. 
Our approach, based on the mapping of known human genes to whole-genome 
sequence alignments of multiple species, allows us to utilize the annotation 
information from well studied model species, such as human and mouse, and predict 
gene structure in other, relatively poorly annotated species. Using our method, we 
recover all 6 intron deletion events detected in the smaller scale study of Roy and 
Gilbert [5], and extend their conclusions regarding the patterns of intron loss in 
mammals. There are several remarkable characteristics of our dataset: 1) losses appear 
to occur almost exclusively for small introns; 2) essentially all of our examples of loss 
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are consistent with an exact deletion event; 3) the loss events are biased towards the 
3’ half of genes, but can be found at all positions; 4) genes that are associated with 
intron loss events are generally highly expressed and have housekeeping functions; 5) 
all of the differences in gene structure are consistent with intron loss events – no 
detected intron insertions have occurred in human or mouse since their divergence. 
Below, we discuss some implications of these findings.  

Mechanism of Intron Loss. It has been suggested that intron loss may be mediated 
either by genomic deletion events or recombination of the genomic locus with a 
reverse-transcribed, processed mRNA molecule of the gene [16]. Our analysis 
suggests that at least 98% (and possibly all) of the observed deletions are exact. In 
addition, we do not detect any evidence for inexact deletions, which would retain a 
small part of the intron or remove parts of neighboring exons. It has been argued [5] 
that random genomic deletion events would be unlikely to always result in exact 
intron losses. This is even more evident in our large dataset. It would be extremely 
unlikely that, if intron loss were generally mediated by random deletions, we would 
not recover any cases of inexact losses. Even in the presence of purifying selection 
against such potentially deleterious events, it seems plausible that some minor 
insertion/deletions of the boundary sequence, particularly ones that do not alter the 
reading frame, would be evolutionarily neutral. Thus the exact character of the 
detected intron loss events supports the latter model, namely recombination with an 
intronless cDNA of the gene.  

The small size of the introns provides another insight into the mechanism of loss. It 
is well documented that genetic recombination events occur less frequently in the 
presence of mismatches, insertions, or deletions within the recombining substrates 
[17]. We propose that in the cases of intron loss, recombination with cDNA is much 
more likely if the introns are small, resulting in a high relative effective proportion of 
sequence identity. 

We also find that genes susceptible to intron loss tend to be involved in housekeeping 
functions and expressed at relatively high levels. Again, high level of expression most 
likely results in relatively high levels of reverse-transcribed copies of the gene, leading 
to an increased probability of recombination. A similar effect has been demonstrated for 
the frequency of processed pseudogenes [18]. Furthermore, in order for the recombi-
nation events to result in intron losses that are transmitted to the next generation and 
have a chance to increase in frequency in the population, the loss events must occur in 
the germline, as opposed to somatic cells. Thus, germline expression of the gene would 
be an essential condition for intron loss. In accordance with this prediction, we find that 
our intron-deleted dataset is highly enriched in housekeeping (ubiquitously expressed) 
genes. Thus both the expression levels and the expression patterns of the genes support 
the recombination-mediated model of intron loss.  

Finally, we find that the position of the lost introns is significantly biased towards 
the 3’ ends of the genes. This is in accordance with recent studies of lower eukaryotes 
[19, 20] and again supports intron loss being mediated by recombination, since 
reverse transcription of the mRNA is believed to occur preferentially from the 3’ end. 
This may reflect the bias in distribution of intron sizes (first introns are generally 
longer) and selective pressures against deleting regulatory regions (first introns have a 
greater conservation across species) [21]. 



 Intron Loss Dynamics in Mammals 169 

Multiple Successive Intron Losses. We identify two cases of multiple consecutive 
intron losses (see Table 2), which we classify as a distinct type of event. The introns 
lost in these events are generally considerably longer than those involved in the usual 
single-loss cases. We propose that this type of rearrangement event occurs as a result 
of recombination with nearly complete cDNA, whereas in the more typical cases the 
recombining cDNAs may be incomplete or fragmented. The overall greater available 
length of substrate involved in the concerted losses may promote recombination 
despite the presence of long unmatched intronic regions. 

Selection Favoring Intron Loss? The preferential intron loss in highly expressed 
housekeeping genes is also consistent with selection for transcription efficiency 
favoring the resulting short transcript. However, most of the deleted introns are 
extremely short while, selection alone would favor the loss of longer introns. In the 
example of the GAPDH gene, a loss of an 82 bp intron from a 3783 bp transcript 
would result in only a very modest 2% decrease in the time of transcription. In 
comparison, loss of the first intron fully contained within the CDS (~1700 bp) could 
result in a 45 % reduction. We believe that the availability of cDNA and the length of 
unmatched intronic sequences in the recombining strands are the primary limiting 
factors in the process of intron loss. Once the gene conversion event occurs, selection 
may be an additional force increasing the probability of fixation of such events.  

Rates of Intron Loss and Gain. The rate of intron loss in mammals appears 
extremely slow. The fastest genome-wide rate, in the rat lineage is approximately 1 
intron loss per 1.53 million years. We note that the rates are not clocklike and seem 
correlated with the generation time of each lineage: rodent > dog > human. At the 
current rate, it would take more than 1012 years for the human genome to shed half of 
its introns. Hence, intron loss/gain does not appear to be a major factor in mammalian 
evolution. 

Since no cases of intron gain were detected, we estimate the process to proceed 
considerably slower than intron loss. Our approach would allow us to detect intron 
gain events occurring in the mouse/rodent lineage, after its divergence from the 
human lineage. Since no cases of intron gain (and 63 losses) were detected, we 
estimate the process to proceed considerably slower than intron gain. Our 
observations further support the theory of introns being evolutionarily inert and, 
having expanded through early eukaryotic genomes (or being inherited through earlier 
yet ancestors), have been gradually, albeit very slowly, disappearing within 
mammalian lineages over at least the past 100 million years. 
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Abstract. Given a multiple alignment of orthologous DNA sequences
and a phylogenetic tree for these sequences, we investigate the problem
of reconstructing the most likely scenario of insertions and deletions ca-
pable of explaining the gaps observed in the alignment. This problem,
that we called the Indel Maximum Likelihood Problem (IMLP), is an im-
portant step toward the reconstruction of ancestral genomics sequences,
and is important for studying evolutionary processes and genome func-
tion. We solve the IMLP using a new type of tree hidden Markov model
whose states correspond to single-based evolutionary scenarios and tran-
sitions model dependencies between neighboring columns. The standard
Viterbi and Forward-backward algorithms are optimized to produce the
most likely ancestral reconstruction and to compute the level of confi-
dence associated to specific regions of the reconstruction. The method is
illustrated on a set of 85kb sequences from eight mammals.

Keywords: Ancestral genome reconstruction; Insertions and deletions;
Tree-HMM; Ancestral mammalian genomes.

1 Introduction

It has recently been shown that the phylogeny of eutherian mammals is such
that an accurate reconstruction of the genome of an early ancestral mammal
is possible [1]. The ancestral genome reconstruction procedure involves several
difficult steps, including the identification of orthologous regions in different
extant species, ordering of syntenic blocks, multiple alignment of orthologous
sequences within each syntenic block, and reconstruction of ancestral sequences
for each aligned block. This last step involves the inference of the set of sub-
stitutions, insertions, and deletions that have may have produced a given set
of multiply-aligned extant sequences. While the problem of reconstructing sub-
stitutions scenarios has been well studied (starting with Felsenstein (1981) [7]),
the inference of insertions and deletions scenarios has received less attention (but
see the seminal contribution of Thorne, Kishino and Felsenstein [19]). The diffi-
culty of the problem is due in large part to the fact that insertions and deletions
(indels) often affect several consecutive nucleotides, so the columns of the align-
ment cannot be treated independently, as opposed to the maximum likelihood
problem for substitutions [7]. The reconstruction of the most parsimonious sce-
nario of indels required to explain a given multiple sequence alignment has been
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shown to be NP-Complete by Chindelevitch et al.[5], but good heuristics have
been developed by Blanchette et al. [1], Chindelevitch et al. [5], and Fredslund
et al. [9].

A maximum likelihood reconstruction would be preferable to a most parsi-
monious reconstruction because it would be more accurate and would allow to
estimate the uncertainty related to certain aspects of the reconstruction. Sim-
ilarly to statistical alignment approaches [13] (which unfortunately remain too
slow for genome-wide reconstructions), we seek to gain a richer insight into an-
cestral sequences and evolutionary processes. In this paper, we thus focus on the
problem we call the Indels Maximum Likelihood Problem (IMLP). It consists
of inferring the set of insertions and deletions that has the maximal likelihood,
according to some fixed evolutionary parameters, and that could explain the
gaps observed in a given alignment. An example of the input and output of this
problem are shown in Figure 1. Indel evolutionary scenarios are useful for several
other problems such as annotating functional regions of extant genomes, includ-
ing protein-coding regions [17], RNA genes [15], and other types of functional
regions [16].

Here, we start by giving a formal definition of the Indel Maximum Likelihood
Problem. To solve the problem, we use a special type of tree Hidden Markov
Model, which is a combination of a standard Hidden Markov Model and a phy-
logenetic tree. We show how the most likely path through the tree-HMM leads
to the most likely indel scenario and how a variant of the standard Viterbi algo-
rithm can solve the problem. Although the size of the HMM is exponential in the
number of extant species considered, we show how the knowledge given by the
phylogenetic tree and the aligned sequences allows the state space of the HMM
to be considerably reduced, resulting in a practical, yet exact, algorithm. Our
implementation is able to solve large problems on a simple desktop computer
and allows for an easy parallelization. Finally, we assess the complexity and ac-
curacy of our algorithm on a multiple alignment of eight orthologous mammalian
genomic sequences of ∼50kb each.

2 The Indel Maximum Likelihood Problem

In this section we will give a precise definition for the Indel Maximum Likelihood
Problem (IMLP). Consider a rooted binary phylogenetic tree T = (VT , ET ) with
branch lengths λ : VT → R+. If n is the number of leaves of T , there are n − 1
internal nodes and 2n − 2 edges.

Consider a multiple alignment A of n orthologous sequences corresponding to
the leaves of the tree T . Since the only evolutionary events of interest here are
insertions and deletions, A can be transformed into a binary matrix, where gaps
are replaced by 0’s and nucleotides by 1’s. Let Ax be the row of the binarized
alignment corresponding to the sequence at leaf x of T , and let Ax[i] be the
binary character at the i-th position of Ax. Assume that the alignment A con-
tains L columns, we add for convenience two extra columns, A[0] and A[L + 1],
consisting exclusively of 1’s.
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1 2 3 4 5 6 7
0 0 0 0 1 1 1
0 1 0 0 1 0 1 
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

1 1 1
1 0 1

1 

1 
1 

del (2,2), ins (6,6)

del (3,4), ins (5,7)

ins (1,1)

del (2,4)

0 1 0 0 1 0 1
0 1 1 1 0 0 0
0 1 1 1 0 0 0
1 1 1 1 0 0 0 

Ancestral reconstructionMultiple alignment Indel Scenario

Fig. 1. Example of an input and output to the Indel Maximum Likelihood Problem.
The input consists of a multiple alignment (shown on the left in binary format) and
the topology and branch lengths of the phylogenetic tree. The output consists of a
set of insertions and deletions, placed along the edges of the tree, explaining the gaps
(zeros) in the alignment. The dashed boxes in the alignment indicate the deletions and
the shaded boxes indicate the insertions of the scenario shown on the right. This set
of operations yields the ancestral reconstruction shown on the right.

Definition 1 (Ancestral reconstruction). Given a multiple alignment A of
n extant sequences assigned to the leaves of a tree T , an ancestral reconstruction
A∗ is an extension of A that assigns a sequence A∗

u ∈ {0, 1}L+2 to each node u
of T , and where A∗

u = Au whenever u is a leaf.

An ancestral reconstruction thus specifies, for each ancestral node of T , what
positions were occupied by a nucleotide and what positions had a gap (see Figure
1 for an example). The following restriction on the set of possible ancestral
reconstructions is necessary in some contexts.

Definition 2 (Phylogenetically correct ancestral reconstruction). An
ancestral reconstruction A∗ is phylogenetically correct if, for any u, v, w ∈ VT

such that w is located on the path between u and v in T , we have A∗
u[i] = A∗

v[i] =
1 =⇒ A∗

w[i] = 1.

Requiring an ancestral reconstruction to be phylogenetically correct corresponds
to assuming that any two nucleotides that are aligned in A have to be derived
from a common ancestor, and thus that all the ancestral nodes between them
have to have been a nucleotide. This prohibits aligned nucleotides to be the result
of two independent insertions. Assuming that this property holds perfectly for a
given alignment A is somewhat unrealistic, but, for mammalian sequences, good
alignment heuristics have been developed (e.g. TBA [2], MAVID [3], MLAGAN
[4]) and have been shown to be very accurate [2]. In the future, we plan to relax
this assumption, but, for now, we will concentrate only on finding phylogeneti-
cally correct ancestral reconstructions.

Since we are considering insertions and deletions affecting several consecutive
characters, we delimit each operation by the positions s and e in the aligned
sequences where it starts and ends. Let x and y be two nodes of the tree, where
x is the parent of y. The alignment consisting of rows A∗

x and A∗
y is divided into

a set of regions defined as follows (see Figure 2).
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Definition 3 (Deletions, Insertions, Conservations, and Length).

– The region (s, e) is a deletion if (a) for all i ∈ {s, . . . , e}, A∗
y[i] = 0, (b)

A∗
x[s] = A∗

x[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is a deletion (i.e. we
only consider regions that are maximal).

– The region (s, e) is an insertion if (a) for all i ∈ {s, . . . , e}, A∗
x[i] = 0, (b)

A∗
y[s] = A∗

y[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is an insertion.
– The region (s, e) is a conservation if (a) for all i ∈ {s, . . . , e}, A∗

x[i] = A∗
y[i]

and (b) no region (s′, e′) ⊃ (s, e) is a conservation.
– The length of region (s, e) is the number of non-trivial positions it contains:

l(s, e) = |{s ≤ i ≤ e|A∗
x[i] �= 0 or A∗

y[i] �= 0}|.
A pair of binary alignment rows A∗

x and A∗
y can thus be partitioned into a set

of non-overlapping insertions, deletions, and conservations.

Ax: 1  1101  00  1010  1  001

Ay: 1  0000  11  1010  0  001

              C1       D1          I1          C2        D2      C3

      l(C1)=1 l(D1)=3  l(I1)=2  l(C2)=2 l(D2)=1 l(C3)=1

1 

1 

1101 

0000 

00 

11 

1010 

1010 

001

001

1 

0 

*
*

Fig. 2. Example of the partition of a paiwise alignment of A∗
x and A∗

y, where x is the
parent of y. The length of each region is given below the region.

Definition 4 (Indel scenario). The indel scenario defined by an ancestral
reconstruction A∗ is the set of insertions and deletions that occurred between the
ancestral reconstructions at adjacent nodes in T .

All that remains is to define an optimization criterion on A∗. Two main choices
are possible: a parsimony criterion or a likelihood criterion.

2.1 The Indel Parsimony Problem

The parsimony approach for the indel reconstruction problem has been intro-
duced by Fredslund et al. [9] and Blanchette et al. [1]. In its simplest version,
it attempts to find the phylogenetically correct ancestral reconstruction A∗ that
minimizes the total number of insertions and deletions defined by A∗:

indelParsimony(A∗) =
∑

u,v:(u,v)∈E

|{(s, e) : (s, e) is a deletion or an insertion from A∗
u to A∗

v}|

The Indel Parsimony Problem is NP-Hard [5]. Most authors have studied a
weighted version of the IPP where the cost of indels depends linearly on their
length (affine gap penalty). Blanchette et al. [1] proposed a greedy algorithm,
and good exact heuristics have been developed [5,9]. The limitation of these
approaches is that they only give a single solution as output, and provide no
measure of uncertainty of the various parts of the reconstruction. In contrast, a
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likelihood-based approach has the potential of providing a more accurate solution
and a richer description of the set of possible solutions.

2.2 Indel Maximum Likelihood Problem

In this section, we define the indel reconstruction problem in a probabilistic
framework and similar to the Thorne-Kishino-Felsenstein model [18]. To this
end, we need to define the probability of transition between an alignment row
A∗

x and its descendant row A∗
y. This probability will be defined as a function

of the probability of the insertions, deletions, and conservations that happened
from A∗

x to A∗
y .

Let PDelStart(λ(b)) be the probability that a deletion starts at a given po-
sition in the sequence, along a branch b of length λ(b), and PInsStart(λ(b))
is defined similarly. We assume that these probabilities only depend on the
length λ(b) of the branch b along which they occur, but not on the position
where the indel occurs. A reasonable choice is PDelStart(λ(b)) = 1 − e−ψDλ(b)

and PInsStart(λ(b)) = 1 − e−ψIλ(b), for some deletion and insertion rate pa-
rameters ψD and ψI , but our algorithm allows for any other choice of these
probabilities. Thus, the probability that none of the two events happens at
a given position, which we call the probability of a conservation, is given by
PCons(λ(b)) = e−(ψD+ψI )λ(b). We assume that the length of a deletion fol-
lows a geometric distribution, where the probability of a deletion of length k
is αk−1

D (1 − αD) and the probability of an insertion of length k is αk−1
I (1 − αI).

One can thus see αD (resp. αI) as the probability of extending a deletion (resp.
insertion). This assumption, necessary to design a fast algorithm, holds rela-
tively well for short indels, but fails for longer ones [12]. Our algorithm allows
the parameters αD and αI to depend on the branch b, but the results reported
in Section 5 correspond to the case where αD and αI were held constant across
the tree. The probability that alignment row A∗

x was transformed into alignment
row A∗

y along branch b can be defined as follows:

Pr(A∗
y|A∗

x, b) =
∏

(s,e): deletion from A∗
x to A∗

y

PDelStart(λ(b)) · (αl(s,e)−1
D (1 − αD)) ·

∏
(s,e): insertion from A∗

x to A∗
y

PInsStart(λ(b)) · (αl(s,e)−1
I (1 − αI)) ·

∏
(s,e):conservation from A∗

x to A∗
y

(PCons(λ(b))l(s,e)

This allows us to formulate precisely the problem addressed in this paper:

Indel Maximum Likelihood Problem (IMLP)
Given: A multiple sequence alignment A of n orthologous sequences related by
a phylogenetic tree T with branch lengths λ, a probability model for insertions
and deletions specifying the values of ψD, ψI , αD, and αI .
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Find: A maximum likelihood phylogenetically correct ancestral reconstruction
A∗ for A, where the likelihood of A∗ is:

L(A∗) =
∏

b=(x,y)∈ET

Pr[A∗
y|A∗

x, b]

3 A Tree Hidden Markov Model

In this section, we describe the tree-based hidden Markov model that is used
to solve the IMLP. A tree-Hidden Markov Model (tree-HMM) is a probabilistic
model that allows two processes to occur, one in time (related to the sequence
history in a given column of A), and one in space (related to the changes to-
ward the neighboring columns). Tree HMMs were introduced by Felsenstein and
Churchill [8] and Yang [20] to improve the phylogenetic models that allows for
variation among sites in the rate of substitution, and have since then been used
for several other purposes (detecting conserved regions [16] and predicting genes
[17]). Just as any standard HMM [6], a tree-HMM is defined by three compo-
nents: the set of states, the set of emission probabilities, and the set of transition
probabilities.

3.1 States

Intuitively, each state corresponds to a different single-column indel scenario
(although additional complication are described below). Given a rooted binary
tree T = (VT , ET ) with n leaves, each state corresponds to a different labeling of
the edges ET with one of three possible events: I (for insertion), D (for deletion),
or C (for conservation). The set S of possible states of the HMM would then
be S = {I, D, C}2n−2. However, this definition is not sufficient to model certain
biological situations (see Figure 3). We will use the ’*’ symbol to indicate that,
along a certain branch b = (x, y), no event happened because there was a base
neither at node x nor at node y. This will happen in two situations: when edge b is
a descendant of edge b′ that was labeled with D (i.e. the base was deleted higher
up the tree), and when there exists an edge b′ that is not between b and the root
and that is labeled with I (i.e. an insertion happened elsewhere in the tree). The
fact that these extraneous events can potentially interrupt ongoing events along
branch b means that the HMM needs to have a way to remember what event
was actually going on along that branch. This transmission of memory from
column to column is achieved by three special labels: I∗, D∗, and C∗, depending
on whether the ∗ regions is interrupting an insertion, deletion, or conservation.
Thus, we have S ⊆ {I, D, C, I∗, D∗, C∗}2n−2. Although this state space appears
prohibitively large (62n−2), the reality is that a number of these states cannot
represent actual indel scenarios, and can thus be ignored. The following set of
rules specify what states are valid.

Definition 5 (Valid states). Given a tree T = (VT , ET ), a state s assigning
a label s(b) ∈ {I, D, C, I∗, D∗, C∗} to each branch b ∈ ET is valid if the two
following conditions hold:
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– (Phylogenetic correctness condition) There must be at most one branch b
such that s(b) = I.

– (Star condition) Let b ∈ ET , and let anc(b) ⊂ ET be the set of branches
on the path from the root to b. Then s(b) ∈ {I∗, D∗, C∗} if and only if
∃b′ ∈ anc(b) such that s(b′) = D or ∃b′ ∈ (ET \ anc(b)) such that s(b′) = I.

The number of valid states on a complete balanced phylogenetic tree with n
leaves is O(n · 32n) (the number is dominated by states that have a ’I’ on a
branch leading to a leaf, which leaves all other 2n − 3 edges free to be labeled
with either C∗, D∗, or I∗). Although this number remains exponential, it is
significantly better than the 62n−2 valid and invalid states.

3.2 Emission Probabilities

In an HMM, each state emits one symbol, according a certain emission proba-
bility distribution. In our tree-HMMs, each state emits a collection of symbols,
corresponding to the set of characters obtained at the leaves of T when indel
scenario s occurs. Intuitively, we can think of a state as emitting an alignment
column. The following definition formalizes this.

Definition 6. Let s be a valid state for tree T = (VT , ET ) with root r. Then,
we define the output of state s as a function Os : VT → {0, 1} with the following
recursive properties:

1. Os(root) =
{

0, if ∃x ∈ VT such that s(x) = I
1, otherwise .

2. Let e = (x, y) ∈ ET , with x being the parent of y. Then,

Os(y) =

⎧⎨
⎩

0, if s(e) = D
1, if s(e) = I
Os(x), otherwise

Let C be an alignment column (i.e. an assignment of 0 or 1 to each leaf in T ).
We then have the following degenerate emission probability for state s:

Pre[C|s] =
{

1 if Os(x) = C(x) for all x ∈ leaves(T )
0 otherwise

Thus, each state s can emit a single alignment column C. However, many dif-
ferent states can emit the same column.

3.3 Transition Probabilities

The last component to be defined is the set of transition probabilities of the
tree-HMM. The probability of transition from state s to state s′, Prt[s′|s] is a
function of set of events that occurred along each edge of T . Intuitively, Prt[s′|s]
describes the probability of the single-column indel scenario s′, given that sce-
nario s occurred at the previous column. This transition probability is a func-
tion of insertions and deletions that started between the two columns, of those
that were extended going from one column to the next. Specifically, we have
Prt[s′|s] =

∏
b∈ET

ρ[s′(e)|s(e), b], where ρ is given in Table 1.
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Table 1. Edges transition table ρ[s′(e)|s(e), b]. Notice that ρ is not a transition prob-
ability matrix, since its rows sum to more than one.

s(e) \ s(e)′ C D I C∗ D∗ I∗

C PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0
D (1 − αD)PCons(λ(b)) αD (1 − αD)PInsStart(λ(b)) 0 1 0
I (1 − αI)PCons(λ(b)) (1 − αI)PDelStart(λ(b)) αI 0 0 1
C∗ PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0
D∗ (1 − αD)PCons(λ(b)) αD (1 − αD)PInsStart(λ(b)) 0 1 0
I∗ (1 − αI)PCons(λ(b)) (1 − αI)PDelStart(λ(b)) αI 0 0 1

3.4 Tree-HMM Paths and Ancestral Reconstruction

We now show how the tree-HMM described above allows us to solve the IMLP.
Consider a multiple alignment A of length L on a tree T . A path π in the tree-
HMM is a sequence of states π = π0, π1, ..., πL, πL+1. Based on the standard
HMM theory, we get:

Pr[π, A] = Pr[π0, A0]
L+1∏
i=1

Pre[A[i]|πi] · Prt[πi|πi−1]

Figure 3 gives an example of an alignment with some of the non-zero proba-
bility paths associated.

Theorem 1. Consider an alignment A on a tree T . Then π∗=argmaxπ Pr[π, A]
yields the most likely indel scenario for A, and a maximum likelihood ancestral
reconstruction A∗ is obtained by setting A∗

u[i] = Oπ∗
i
(u).

Proof. It is simple to show that for any ancestral reconstruction Â for A, we
have L(Â) = Pr[π, A], where π is the path corresponding to Â. Thus, maximizing
Pr[π, A] maximizes L(Â).

4 Computing the Most Likely Path

To compute the most likely path π∗ through a tree-HMM, we adapted the stan-
dard Viterbi dynamic programming algorithm [6]. Let

X(i, k) = max
π = π0, π1, ..., πi

such that πi = k

Pr[π, A[1...i]]

be the likelihood of the most probable path ending at state k for the i first
columns of the alignment. Let c ∈ S be the state made of C’s on all edges of T .
Since the dummy column A[0] consists exclusively of 1’s, c is the only possible
initial state. For any i between 0 and L + 1 and for any valid state s ∈ S, we
can compute X(i, s) as follows:
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Fig. 3. The set of valid, non-zero probability states associated to the multiple alignment
given at the top of the figure. When edges are labeled with more than one character
(e.g. C∗, D∗), the tree represents several possible states. For the third column, not
all possible states are shown. Arrows indicate one possible path through the tree-
HMM. This path corresponds to two interleaved insertions, shown by two boxes in the
alignment, illustrating the need for the I∗ character.

X(i, s) =

⎧⎨
⎩

1, if i = 0 and s = c
0, if i = 0 and s �= c
Pre[A[i]|s] · maxs′∈S(X(i − 1, s′) · Prt[s|s′]), if i > 0

Finally, π∗ is obtained by tracing back the dynamic programming, starting
from entry X(L+1, c). The running time of a naive implementation of the Viterbi
algorithm is O(|S|2L), which quickly becomes impractical as the size of the tree
T grows. In the next section, we show how to make this computation practical
for moderately large trees and for long sequences.

4.1 Viterbi Optimizations

The previous implementation of the Viterbi algorithm cannot run on large se-
quences or when the number of taxa is greater to 8, due to the fact that the
number of possible valid states is O(n32n). Even though the number of states
is exponential, most of alignment columns can only be generated with non-zero
probability by a much more manageable number of states. Given an alignment
A, it is possible to compute, for each column A[i], the set Si of valid states that
can emit A[i] with non-zero probability. For instance, an alignment column with
only 1’s will lead to only one possible state, independently of the number taxa n.
To compute only the valid states for a given column of the alignment, we used a
divide and conquer approach that is presented in Algorithm 1. The idea behind
this algorithm is to compute partial valid states for subtrees and to merge these
subtrees while keeping only valid merged states. The process is done in a bottom
up fashion until the root of the tree is reached.
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Although the sets of possible states S0, ..., SL+1 obtained from this algo-
rithm are generally relatively small, more improvements are possible, because
the transition probability between most pairs of states is zero. We can thus
remove from Si any state s such that the transition to s from any state in
Si−1 has probability zero. Proceeding from left to right, we get S′

0 = S0, and
S′

i = {s ∈ Si|∃t ∈ S′
i−1 s.t. Prt[s|t] > 0}. For instance, if, in all states of Si−1,

an edge e is labeled by deletion D, then none of the states in Si can have edge
e labeled with C∗ or I∗. This yields a huge improvement for alignment regions
consisting of a number of adjacent positions with a base in only one of the n
species and ensures that the algorithm will be practical for reasonable number
of sequences (see Section 5).

Algorithm 1. buildValidState(node root, C)
Require: root: a tree node, C: an alignment column.
Ensure: Set of valid, non-zero probability states for C.
1: if root is a leaf then
2: return list of possible operations according to the character at that leaf
3: else
4: leftList = buildValidState(root.left, C)
5: rightList = buildValidState(root.right, C)
6: return mergeSubtrees(leftList, rightList, root)
7: end if

4.2 Forward-Backward Algorithm

A significant advantage of the maximum likelihood approach over the parsi-
mony approach is that it allows evaluating the uncertainty related to certain
aspects of the reconstruction. For example, it is useful to be able to compute
the probability that a base was present at a given position i of a given ancestral
node u: Pr[A∗

u[i] = 1|A] =
∑

s∈S:Os(u)=1 Pr[πi = s|A]. This allows the computa-
tion of the probability of making an incorrect prediction at a given position of a
given ancestor. The forward-backward is a standard HMM algorithm to compute
Pr[πi = s|A] (see [6] for details):

F (i, s) =

⎧⎨
⎩

1, if i = 0 and s = c
0, if i = 0 and s �= c
Pre[A[i]|s] ·

∑
s′∈S′

i−1
(F (i − 1, s′) · Prt[s|s′]), if i > 0

B(i, l) =

⎧⎪⎨
⎪⎩

1, if i = L + 1 and l = c
0, if i = L + 1 and l �= c∑
s′∈S′

i+1

Pre[A[i + 1]|s′] · F (i + 1, s′) · Prt[s′|s]), if i < L + 1

Pr[πi = s|A] =
F (i, s)B(i, s)∑

s′∈S′
i
F (i, s′)B(i, s′)

The optimizations developed for the Viterbi algorithm can be also applied
directly to the Forward-Backward algorithm.
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Algorithm 2. mergeSubtrees(StateList leftList, StateList rightList, node root)
Require: leftList and rightList: the lists of partial states, root: a tree node.
Ensure: Set of valid, non-zero probability states combining elements in leftList and

rightList.
1: for all partial states l in leftList do
2: for all partial states r in rightList do
3: if compatible(l, r) = true then { # merging those two partial states yields a

valid partial state}
4: m = merge(l, r)
5: if root = initialroot then
6: mergedList.add(m)
7: else
8: for all operations on a branch op do
9: if isPossibleUpstream(m,op) then {#Checks if op can legally be

added to m}
10: mergedList.add(addAncestorBranch(m,op))
11: end if
12: end for
13: end if
14: end if
15: end for
16: end for
17: return mergedList

5 Results

Our tree-HMM algorithm was implemented as a C program that is available upon
request. The program was applied to a 50kb region of chromosome 13 of human,
together with orthologous regions in 7 other species of mammals: chimp, mouse,
rat, cow, dog, armadillo, and elephant1 [14]. This region is representative of the
whole genome, and contains coding, intergenic regions, and intronic regions. The
multiple alignment of these regions, computed using TBA [2], contains 85,000
columns. The phylogenetic tree used for the alignment and for the reconstruction
is shown in Figure 4. The branch lengths are based on rates of substitution
estimated on a genome-wide basis. The parameters of the indel model were set
as follows: ψD = 0.05, ψI = 0.05, αD = 0.9 and αI = 0.9.

We first compared the maximum likelihood ancestral reconstruction found
using our Viterbi algorithm to the ancestors inferred using the greedy algorithm
of Blanchette et al. [1]. Table 2 shows the degree of agreement between the two
reconstructed ancestors, for each ancestral node. We observe that both methods
agree to a very large degree. The most disagreement concerns the ancestor at
the root of the eutherian tree, which, in the absence of an outgroup, cannot be
reliably predicted by any method. We expect that in most cases of disagreement,

1 In the case of cow, armadillo, and elephant, the sequence is incomplete and a small
fraction of the bases are missing.
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Fig. 4. Phylogenetic tree for the eight mammalian species studied in this paper

Table 2. Percentage of alignment columns where the ancestor reconstructed by the
greedy algorithm of Blanchette et al. [1] and that predicted by our maximum-likelihood
algorithm are in agreement.

Ancestor % of agreement
Cow + Dog 99.38
Mouse + Rat 97.83
Human + Chimp 99.83
Human + Chimp + Mouse + Rat 99.33
Human + Chimp + Mouse + Rat + Cow + Dog 98.41
Human + Chimp + Mouse + Rat + Cow + Dog + Armadillo 94.13
Human + Chimp + Mouse + Rat + Cow + Dog + Armadillo + Elephant 89.01

the maximum likelihood is the most likely to be correct, although the opposite
may be true in case of gross model violations [11].

The main strength of the likelihood-based method is its ability to measure un-
certainty, using the forward-backward algorithm, which something that no pre-
vious method allowed. The probability that the maximum posterior probability
reconstruction is correct is simply given by max{Pr[A∗

u[i] = 1|A], 1 − Pr[A∗
u[i] =

1|A]}. For example, if Pr[A∗
u[i] = 1|A] = 0.3, then the maximum posterior prob-

ability reconstruction would predict A∗
u[i] = 0, and would be right with proba-

bility 0.7. Figure 5 shows the distribution of this probability of correctness, for
each ancestral node in the tree. We observe, for example, that 97.7% of the posi-
tions in the Boreoeutherian ancestor (the human+chimp+mouse+rat+cow+dog
ancestor, living approximately 70 million years ago), are reconstructed with a
confidence level above 99% 2. The ancestor that is the easiest to reconstruct
confidently is obvious the human-chimp ancestor, where less than 0.5% of the
columns have a confidence level below 99%. Again, the root of the tree is
the node that is the most difficult to be reconstructed confidently, because of
the absence of an outgroup. Overall, this shows that most positions of most an-
cestral nodes can be reconstructed very accurately, and that we can identify the
few positions where the reconstruction is uncertain.

A potential drawback of the tree-HMM method is that it’s running time is, in
the worst case, exponential on the number of sequences being compared. How-
ever, the optimizations described in this paper greatly reduce this number, so

2 We need to to keep in mind, though, that these numbers assume the correctness of
the multiple alignment, as well as that of the branch lengths and indel probability
model, so that they do not reflect the true correctness of the reconstructed ancestor.
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the algorithm remains quite fast. Our optimized Viterbi algorithm produced its
maximum likelihood ancestral predictions on the 8-species alignment of 85,000
columns in two hours on an Intel Pentium IV machine (3.2 Ghz), while the
forward-backward algorithm produced an output after approximately four hours.
Figure 6 shows the distribution of the number of states that were actually con-
sidered, per alignment column, in the case of the 8-species alignment of 85,000
columns. Most alignment column are actually associated to less than 50 states.
However, a small number of columns are associated to a very large number of
states (8 columns have more than 21,000 states). Fortunately, these columns are
rarely consecutive, so the incurred running time is not catastrophic.
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6 Discussion and Future Work

The method developed here allows predicting maximum likelihood indel sce-
narios and their resulting ancestral sequences for reasonably large alignments.
Furthermore, it allows estimating of the probability of error in any part of the
prediction, using the forward-backward algorithm. Integrated into the pipeline
for whole-genome ancestral reconstruction, it will improve the quality of the pre-
dictions and allow richer analyses. The main weakness of our approach is that
it assumes that a correct phylogenetic alignment is given as input. While many
existing multiple alignment programs have been shown to be quite accurate on
mammalian genomic sequences (including non-functional or repetitive regions)
[2], it has been also shown that a sizeable fraction of reconstruction errors is due
to incorrect alignments [1]. Ideally, one would include the optimization of the
alignment directly into the indel reconstruction problem, as originally suggested
by Hein [10]. However, with the exception of statistical alignment approaches
[13] (which remains too slow to be applicable on a genome-wide scale), genomic
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multiple alignment methods do not treat indels in a probabilistic framework.
We are thus investigating the possibility of using the method proposed here to
detect certain types of small-scale alignment errors, and to suggest corrections.

When predicting ancestral genomic sequences, it is very important to be able
to quantify the uncertainty with respect to certain aspects of the reconstruc-
tion. Our forward-backward algorithm calculates this probability of error for
each position of each ancestral species. However, errors in adjacent columns are
not independent: if position i is incorrectly reconstructed, it is very likely that
position i+1 will be wrong too. We are currently working on models to represent
this type of correlated uncertainties. This new type of representation will play
an important role in the analysis and visualization of ancestral reconstructions.

Finally, to be applicable to complete genomes, and to scale up to the ∼20
mammalian genomes that will soon be available, our algorithm will require fur-
ther optimizations. These will probably force us to move away from an exact
algorithm toward approximation algorithms.
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Abstract. Transcriptional regulation critically depends on proper interactions 
between transcription factors (TF) and their cognate DNA binding sites or cis 
elements. A better understanding and modelling of the TF-DNA interaction is 
an important area of research. The Positional Weight Matrix (PWM) is the most 
common model of TF-DNA binding and it presumes that the nucleotide 
preferences at individual positions within the binding site are independent. 
However, studies have shown that this independence assumption does not 
always hold. If the nucleotide preference at one position depends on the 
nucleotide at another position, a chance mutation at one position should exert 
selection pressures at the other position. By comparing the patterns of 
evolutionary conservation at individual positions within cis elements, here we 
show that positional dependence within binding sites is highly prevalent. We 
also show that dependent positions are more likely to be functional, as 
evidenced by a higher information content and higher conservation. We discuss 
two examples—Elk-1 and SAP-1 where the inferred compensatory mutation is 
consistent with known TF-DNA crystal structure. 

1   Introduction 

Gene transcription in eukaryotes is regulated by a network of transcription factors 
(TF) [1, 2]. A first step in analyzing transcription is to model each TF’s DNA binding 
preference. The in vitro SELEX [3] or footprinting [4] experiments can be used to 
derive the TF’s binding specificity as a positional weight matrix (PWM) [5]. Although 
PWMs are used as the de facto model of TF-DNA interaction, they assume that the 
nucleotide preferences at individual positions within binding sites are independent. 
However, there are several direct and indirect evidences that support inter-position 
dependence within binding sites. Dependence among positions was experimentally 
shown for Mnt repressor [6]. The binding site specificity model can be improved by 
incorporating local pairwise nucleotide dependence [7]. Because of this inter-position 
dependence, the binding sites may fall into distinct clusters or subclasses. This 
                                                           
* Corresponding author. 
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hypothesis was exploited to improve binding site modeling via a mixture model of 
PWMs [8].  

In a biological system with interacting components, mutation in one component 
will lead to selection pressure on the interacting components. Compensatory changes 
and co-evolution of functionally interacting components are not uncommon [9-12]. 
Given several examples of experimentally determined binding sites for a factor, one 
can assess positional dependence by computing the correlation among nucleotide 
pairs at two positions. For instance, the occurrence of nucleotide pair x,y at position-
pair i,j at a much higher frequency than expected, indicates dependence between 
positions i, and j. This and related ideas have been used previously in different 
contexts of DNA signals [13, 14]. However, if we think of the TF-DNA complex as a 
system and the individual nucleotides as components, the positional dependence can 
be assessed more directly by comparing the evolutionary histories of the two posi-
tions. Specifically, if a chance mutation at position i increases the selection pressure 
for a compensatory mutation at position j, this mutation pattern should appear in the 
phylogeny of the binding site, and its presence indicates a functional dependence of 
position j on position i. 

Here we present a method to assess compensatory mutations within TF binding 
sites. We use maximum parsimony tree(s) to infer the evolutionary history of each 
position of the binding site. We then compare the conditional probability of a tree 
(conditioned upon the tree at another position) to its unconditional probability. A 
higher conditional probability indicates compensatory mutation. By using whole 
genome multiple alignments of 5 mammalian genomes and their phylogenetic 
relationship, and high confidence putative binding sites in human promoters for the 
vertebrate transcription factor PWMs from JASPAR [15], we show that positional 
dependence within binding sites is highly prevalent, especially at adjacent positions. 
We also show that inter-positional dependencies are more likely to be functional, as 
evidenced by a greater information content and conservation. We further discuss a 
few cases that could be corroborated by the literature. Thus this work, for the first 
time, directly exploits the pattern of evolutionary changes in individual binding site 
positions to assess compensatory mutations. 

2   Results  

Putative binding sites in human promoters. To estimate compensatory mutations one 
needs a large collection of binding site instances - ideally, experimentally determined. 
Because of a lack of experimentally determined binding sites, we used our previously 
reported computational approach [16] based on phylogenetic footprinting. For each of 
the 79 vertebrate PWMs in JASPAR [15], we scanned the 1kb promoter region of 
20835 human RefSeq genes using our PWM_SCAN tool [16] with a p-value threshold 
of e-9 (chance expectation of one hit every 8.1kb of human genome). Among these 
initial matches we retained up to 1000 highest scoring matches that fell within a gapless 
multiple alignment of human-chimp-mouse-rat-dog (genome.ucsc.edu). Fifteen PWMs 
had no match qualifying these two criteria, thus our analysis is based on 64 PWMs. The 
numbers of matches per TF varied from 1000 to 139 with an average of 856.  
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Compensatory mutations between binding site positions. For a transcription factor M, 
let BM be the set of matches (putative binding sites) in promoters; |BM| = NM. Let LM 
be the width of the binding site. We assume the widely accepted evolutionary 
relationship among the 5 mammals. At each position of each of the sites, we inferred 
the ancestral nucleotides from the maximum parsimony tree(s) using Fitch’s 
algorithm [17]. All maximum parsimony trees were used in the calculations and were 
assumed to be equiprobable. Let CompMut(M,u,v) be the compensatory mutation for 
factor M between positions u and v (see Methods). High values of CompMut(M,u,v) 
indicate compensatory mutations. We define scope s=v-u, assuming v > u [7]. 
CompMut(M,u,v) is computed based on the u,v position pairs of all matches of M (see 
above). To test the significance of CompMut(M,u,v), we generated a control set of i,j 
position pairs. We have used 4 different controls with increasing stringency. For all 
controls we only consider the gapless aligned positions in the 1kb promoter regions of 
20835 human genes (see above). The 4 controls are: 

1. Control-1 constructs i, j pairs by randomly choosing positions i and j. Thus, for a 
set of N 

M positive position pairs, a set of N 
M is randomly selected and treated like 

the positive pairs.  
2. Control-2 constructs i,j pairs by randomly choosing position i and then selecting 

j=i+s.  The only difference from Control-1 is that now the position j is not 
independent from position i. This control captures the inherent neighbourhood 
dependence. 

3. Control-3 constructs PWM Mr with same width as M by randomly sampling 
columns from the 79 vertebrate PWMs in JASPAR. We identify all matches of 
Mr following an identical procedure as for M and select i,j position pairs from 
these matches.  

4. Control-4 derives PWM Mr from M by randomly shuffling the compositions at 
each column (position). Then we identify all matches of Mr following an identical 
procedure as for M and select u,v position pairs from these matches.  

 

Fig. 1. At scope=1, the CompMut values are significantly higher for the actual binding sites 
relative to all 4 controls with a Wilcoxon rank rum based p-value of 5E-8, relative to Control-4 
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Control-1 is the least stringent control and represents random expectation of 
compensatory mutations, while Control-2 accounts for local dependencies in the 
genomes, which may in part correspond to cis elements undetected by our initial 
prediction or to other functional elements. Control-3,4 are the most stringent controls 
in that they recreate PWMs which bear the characteristics of real PWMs. Fig. 1 shows 
the distributions of all CompMut values for 64 JASPAR transcription factors at scope 
s=1. The figure shows the plot for the actual binding sites (foreground) against the 4 
controls. Even against the most stringent, Control-4, the foreground has significantly 
higher values of CompMut. The Wilcoxon rank sum test based p-value against 
Control-4 is 4.9 × 10-8. Similar relationships hold for larger scopes (data not shown). 
However, as we will report next, for higher scopes there is a monotonic decrease in 
compensatory mutations. 

Compensatory mutation decreases with increasing distance between positions. We 
repeated the above experiment for all scopes. With increasing scope, the 
compensatory mutations become smaller and less differentiable from the controls 
(Fig. 2). Thus the inter-position dependence seems to be more prevalent for nearby 
positions, especially for adjacent positions. The Wilcoxon rank-sum test p-value 
against Control-4 varies with increasing scope as follows: 1: 4.9 × 10-8, 2: 5.6 × 10-6, 
3: 5.6 × 10-6, 4: 4.7 × 10-7, 5: 8.8 × 10-4, 6: 6.1 × 10-3, 7: 0.02, 8: 0.09. 

 
Fig. 2. CompMut values decrease with increasing scope 

Functional relevance of positions with compensatory mutations. We expect that the 
positions with greater compensatory mutations are under selection pressure and thus 
more likely to be functional. Due to lack of experimental data to verify whether an 
individual position is functional, we have employed an indirect approach. 
Functionally relevant positions are likely to be less variable (higher information 
content [18] in the PWM) and also likely to have greater conservation across species; 
the phylogenetic footprinting-based prediction of functional elements is based on this 
principle. Previous analysis of TF-DNA 3D-structures reveals that the nucleotides 
interacting with the evolutionarily conserved amino acids have greater information 
content [12].  



190 P. Evans, G. Donahue, and S. Hannenhalli 

 

Fig. 3. The positions involved in compensatory mutations have higher information content 

 
Fig. 4. The positions involved in compensatory mutations are evolutionarily more conserved 

Note that there is no favourable a priori bias in our measures for compensatory 
mutation to favour either the information content or the evolutionary conservation. To 
an extreme case, for a PWM position with high information content whose 
occurrences are highly conserved (low parsimony scores), the unconditional tree 
probabilities will be very high and thus we will nt detect a compensatory mutation 
involving this position. We selected the top 10% of the adjacent position pairs 
(scope=1) with highest CompMut values. We used all positions that were part of these 
pairs as the positive set. The remaining positions were used as the control. We 
compared the information content and the conservation for the positive and  
the control set. We used the average parsimony score as a proxy for conservation—
the lower the parsimony score, the higher the conservation. Fig. 3 shows that the 
positions involved in compensatory mutations have a higher information content 
(Wilcoxon p-value = 0). A similar conclusion can be reached for evolutionary 
conservation as shown in Fig. 4 (Wilcoxon p-value = 0). 

Prediction and validation of specific compensatory mutations. So far we have shown 
that the adjacent positions in putative binding sites show compensatory mutations and 
the positions that exhibit compensatory mutations have greater information content 

Parsimony S cores for Adjacent P ositions

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pa rsim ony Score

N
o

rm
al

iz
ed

 F
re

qu
en

cy

Top 10%

Control

 

In fo rm a tio n  C o n ten t fo r Ad ja ce n t P o sitio n s

0

0.05

0.1

0 .15

0.2

0 .25

0.3

0 .35

0.4

0 .45

0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

In form a tion  C onte n t

N
o

rm
al

iz
ed

 F
re

q
u

en
cy

Top 10%

Control



 Conservation Patterns in cis-Elements Reveal Compensatory Mutations 191 

and are more conserved. Applying a stringent threshold for CompMut allows us to 
predict specific position pairs with compensatory mutations. We have used the 99th 
percentile of the Control-4 as the threshold for CompMut. A total of 280 pairs for all 
scopes qualify this threshold. Supplementary Table S1 provides the pairs of positions 
separately for each scope (only top 20 pairs are shown for each scope). These results 
can be best interpreted against 3-D structures of protein-DNA interactions, but this is 
currently possible only for a handful of cases.  Here, we examine a few cases for 
which literature data is available for direct verification. 

ETS Family.  JASPAR has 5 vertebrate PWMs in the ETS family, which is 
characterized by a GGA core. Due to the significance threshold on PWM hits, only 
three of these were analyzed: MA0028, MA0062, and MA0076. All three have 
significant CompMut scores involving the core positions. A detailed protein-DNA 
interaction diagram showing amino acid/nucleotide interactions is available for 
MA0028 (Elk-1) [19].  Fig. 5 shows that for MA0028, individual amino acids interact 
with multiple bases, suggesting dependencies between bases.  Fig. 5 also shows all 
predicted position pairs with compensatory mutations that qualify the 99th percentile 
threshold relative to the respective Control-4 values of CompMut. The predicted pairs 
are clustered around the GGA core. Furthermore, all of the pairs interacting with the 
same amino acid are predicted (shown as arches), and also a few that do not interact 
with the same amino acid (dotted arches).  

 

Fig. 5. The MA0028 PWM is represented as a chain of 10 bases, with the core in darker font.  
Amino acid interactions are indicated below the chain.  Significant CompMut pairs are 
indicated by arches above the chain.  CompMut pairs denoted by dotted lines are not joined by 
an amino acid interaction. Different scopes are distinguished by the darkness of the arch. 

There is also TF-DNA structural information available for MA0076 (SAP-1) [20]. 
Fig. 6 shows residues of SAP-1 protein α3 helix interacting with DNA bases.  As 
before, all the nucleotide pairs contacting the same residue have high value of 
CompMut (99% pf the Control-4). However, we infer several other dependencies that 
are not directly supported by shared residue contacts. Nevertheless, these additional 
inferred dependencies are supported by shared contact with the α3 helix, i.e., 
positions 3 through 8. Furthermore, it is suspected that the base at position 2 
influences the stability of the bond between the alpha helix and the recognition site, so 
position 2 should also be added to the interdependent set of positions.  Thus there are 
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21 position pairs and all of these qualify the 99th percentile threshold relative to the 
respective Control-4 values of CompMut.  Five additional significant dependencies 
are detected with the CompMut algorithm, as indicated in Fig. 6, and each of these has 
one base that interacts with the alpha helix. 

 

Fig. 6. The MA0076 PWM is represented as a chain of 9 bases, with the core in darker font.  
Amino acid interactions are indicated below the chain.  Only the significant CompMut pairs 
that involve a non helix residue are shown by dotted lines. Different scopes are distinguished 
by the darkness of the arch.  Significant CompMut pairs within the alpha helix are not shown to 
simplify the figure. 

SAP-1 binds to he Drosophila E74 promoter and the Human c-fos promoter [20].  
SAP-1 has a higher affinity for the fly promoter than for the human promoter, but the 
two binding sites differ only at positions 3 and 7 in Fig.6. In the fly, a C at position 3 
causes the DNA to adopt characteristics that favour the binding of the alpha helix 
mentioned above.  When the C is changed to an A in the Human promoter, these 
characteristics are lost and the binding is less favourable.  3, 7 is a significant 
CompMut pair.  The observations are consistent with a change at position 7 in the 
Human promoter to compensate for the loss of affinity (by changing from an A in 
Drosophila to a T in Human).  Relative importance of bases T and A at position 7 is 
however not known.  

3   Methods 

Computing  Compensatory Mutation. We compute the probability of a tree using the 
Markovian process as in PhyME [21]. However, we differentiate between the 
unconditional probability and the probability conditioned on the other position. The 
compensatory mutation score for positions i and j for PWM X is the fraction of the 
PWM matches of X for which the probability of seeing a tree in one position, i or j, is 
increased by knowledge about the trees at the other position. To calculate 
compensatory mutations, we used two tree probability models, one unconditional and 
one conditioned on a tree from the other position in the i,j pair. We represent these 
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two models using recursive equations on the tree. Below we use the same notation to 
denote a tree node and the nucleotide at that node. 

 

 

Fig. 7. We consider trees from positions i and j in PWM hits and compare the unconditional 
and conditional probabilities of these trees.  The CompMut is the percentage of trees for which 
the conditional probability is higher than the unconditional probability.  

Unconditional model. The unconditional probability of a tree is computed based on a 
Markov process where the root of the tree has a specific emission probability for the 4 
bases, and the various transitions along each tree edge have specific probabilities. The 
emission and transition probabilities are estimated from all but one tree. To calculate 
the probability of a tree, we begin at the root and work our way down the tree 
recursively.  

For a subtree rooted at t, let a be the parent of t and let tL and tR be the left and  
right children of t. Let PT(t) be the probability of subtree rooted at t. We use  
PT to denote tree probability to distinguish it from node probability. 

)()()|Pr()( RL tPTtPTattPT ××= . If t is the root of the tree, then 

)Pr()|Pr( tat = , and for leaf nodes, the children probabilities are set to 1. 

Conditional model. As in the unconditional model, the probability of a tree is 
estimated using a Markov process.  However, the emission probability at the root is 
conditional upon the root nucleotide at another position. The transition probability at 
an edge now depends on the given transition in the corresponding branch at another 
position. In other words, what is the probability of transitioning from A to a C given 
that there was a transition from G to an A in the corresponding branch in the other 
position? As in the unconditional model, the probability calculation begins at the root 
and moves down the tree recursively, as described below.   

For a pair of positions and the trees at the two positions, let 1t  and 2t be the roots 
of the subtrees rooted at some common ancestral species at the two positions. Let a 

and b be the parent nodes of 1t  and 2t  respectively. Let )|( 21 ttPT  be the 

probability of 1t conditioned upon 2t . 
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)|()|(),,|Pr()|( 21212121
RRLL ttPTttPTtbatttPT ××= . As before, if 

1t and 2t are the root nodes, then )|(),,|Pr( 2121 ttPTtbat =  and for leaf nodes, 

the children probabilities are set to 1. 
Both models are trained using all parsimonious trees constructed at positions i and 

j from the PWM hits, and then the tree probabilities above are computed. When more 
than one parsimonious tree appears at a position, fractional counts are used. Not all 
joint counts are observed, so pseudocounts are estimated by randomly choosing two 
positions as in Control-1 and comparing the trees constructed at these positions. We 
keep track of the number of times the conditional model estimates a higher tree 
probability than the unconditional model.  

 

For all PWM matches 
Train the conditional and unconditional models, excluding the position i 

and j trees from the training data.  
 

cond = 0 
 

// Ti: set of all optimal parsimonious trees at position i.  
 // Tj: set of all optimal parsimonious trees at position j. 
 

For all tree pairs ji TtTttt ∈∈ 2121 ,),,( : 

||||

)|( 21

ji TT

ttPT
condcond

×
+=  

uncond = 0 

For all trees iTt ∈ : 

 
||
)(

iT

tPT
unconduncond +=  

counthitPWM
SS jiji __

1
,, +=  if cond > uncond, 0 otherwise 

 

Si, j is the fraction of times the conditional model PT(ti|tj) is greater than the 
unconditional model PT(ti). 

 

),(),,( ,, ijji SSavgjiMCompMut =  

4   Discussion 

We have presented methods to assess compensatory mutations within TF binding sites 
based on inferred patterns of co-mutations at position pairs. We have used several 
controls to show that there is a significant prevalence of compensatory mutations 
within binding sites. Our method may suffer from a lack of sufficient data to estimate 
conditional probabilities of particular changes along the tree branches, thus affecting 
the robustness. Our approach of using the fraction of trees for which the conditional 
probability is higher (as opposed to using mean of median, etc), is meant to increase 
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the robustness. Another method that we have implemented (not reported here) simply 
counts the number of correlated changes in corresponding tree branches and uses a 
log-likelihood measure relative to the expected number of correlated changes. This 
method suffers from a lack of resolution in that it only captures correlated changes 
along tree branches, without differentiating among the types of changes. In general, 
for the top position pairs, the two methods agree (Pearson’s correlation of ~0.6). 
However, a detailed comparative analysis has not been performed.  

The majority of compensatory mutations are among adjacent positions; with 
increasing distance between positions, this tendency decreases. Ultimately, evolution is 
only inferred and any one most parsimonious tree may not be accurate. To make our 
measures robust, we have relied on all maximum parsimonious trees. We have also 
shown that the compensating positions are more likely to be functional as evidenced by 
lower variance within species (high information content) as well as across species (higher 
conservation). There are very few examples of experimentally determined TF-DNA 3D 
structures to directly interpret our specific discoveries. However, we have shown for a 
few cases that our findings are reasonable when compared to experimental data: two ETS 
family members. Even though, in general, there are few compensatory mutations at 
greater distances within the binding sites, those would be very interesting to study in 
greater detail (Tab. S1). We will closely investigate the predictions at higher scopes in 
the future. These studies will not only provide specific insights into functional 
interactions between transcription factors and DNA, they can directly inform the efforts 
to model the DNA binding specificity by incorporating the inter-position dependence. 
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Supplementary Material 

Table S1. For each scope, the table lists the position pairs that qualify the 99th 
percentile threshold relative to the respective Control-4 values of CompMut.  
 

Scope 1:  80 Values (Top 20 Shown)   

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0076 SAP-1 ETS 5 6 
MA0076 SAP-1 ETS 4 5 
MA0076 SAP-1 ETS 6 7 
MA0062 NRF-2 ETS 6 7 
MA0062 NRF-2 ETS 5 6 
MA0062 NRF-2 ETS 4 5 
MA0028 Elk-1 ETS 8 9 
MA0028 Elk-1 ETS 7 8 
MA0088 Staf ZN-FINGER_C2H2 7 8 
MA0076 SAP-1 ETS 3 4 
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MA0028 Elk-1 ETS 6 7 
MA0052 MEF2 MADS 6 7 
MA0076 SAP-1 ETS 2 3 
MA0058 Max bHLH-ZIP 8 9 
MA0062 NRF-2 ETS 3 4 
MA0058 Max bHLH-ZIP 4 5 
MA0018 CREB bZIP 9 10 
MA0079 SP1 ZN-FINGER_C2H2 6 7 
MA0018 CREB bZIP 6 7 
MA0052 MEF2 MADS 5 6 

     
Scope 2:  61 Values (Top 20 Shown)   

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0076 SAP-1 ETS 5 7 
MA0062 NRF-2 ETS 5 7 
MA0076 SAP-1 ETS 4 6 
MA0028 Elk-1 ETS 7 9 
MA0062 NRF-2 ETS 4 6 
MA0076 SAP-1 ETS 3 5 
MA0028 Elk-1 ETS 6 8 
MA0076 SAP-1 ETS 2 4 
MA0058 Max bHLH-ZIP 7 9 
MA0018 CREB bZIP 7 9 
MA0028 Elk-1 ETS 5 7 
MA0088 Staf ZN-FINGER_C2H2 7 9 
MA0079 SP1 ZN-FINGER_C2H2 7 9 
MA0028 Elk-1 ETS 4 6 
MA0018 CREB bZIP 6 8 
MA0076 SAP-1 ETS 6 8 
MA0062 NRF-2 ETS 3 5 
MA0093 USF bHLH-ZIP 4 6 
MA0093 USF bHLH-ZIP 1 3 
MA0018 CREB bZIP 5 7 

     
Scope 3:  46 Values (Top 20 Shown)   

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0076 SAP-1 ETS 3 6 
MA0076 SAP-1 ETS 2 5 
MA0076 SAP-1 ETS 4 7 
MA0062 NRF-2 ETS 4 7 
MA0028 Elk-1 ETS 6 9 
MA0062 NRF-2 ETS 3 6 
MA0062 NRF-2 ETS 1 4 
MA0028 Elk-1 ETS 5 8 
MA0018 CREB bZIP 7 10 
MA0076 SAP-1 ETS 5 8 
MA0028 Elk-1 ETS 4 7 
MA0058 Max bHLH-ZIP 4 7 
MA0062 NRF-2 ETS 5 8 
MA0058 Max bHLH-ZIP 5 8 
MA0003 AP2alpha AP2 1 4 
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MA0079 SP1 ZN-FINGER_C2H2 1 4 
MA0048 Hen-1 bHLH 3 6 
MA0058 Max bHLH-ZIP 6 9 
MA0079 SP1 ZN-FINGER_C2H2 4 7 
MA0062 NRF-2 ETS 2 5 
     
Scope 4:  34 Values (Top 20 Shown)   

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0076 SAP-1 ETS 3 7 
MA0076 SAP-1 ETS 2 6 
MA0028 Elk-1 ETS 4 8 
MA0088 Staf ZN-FINGER_C2H2 8 12 
MA0018 CREB bZIP 4 8 
MA0028 Elk-1 ETS 5 9 
MA0058 Max bHLH-ZIP 4 8 
MA0088 Staf ZN-FINGER_C2H2 7 11 
MA0058 Max bHLH-ZIP 5 9 
MA0062 NRF-2 ETS 4 8 
MA0093 USF bHLH-ZIP 2 6 
MA0014 Bsap PAIRED 12 16 
MA0062 NRF-2 ETS 3 7 
MA0076 SAP-1 ETS 4 8 
MA0018 CREB bZIP 6 10 
MA0042 HFH-3 FORKHEAD 7 11 
MA0079 SP1 ZN-FINGER_C2H2 4 8 
MA0052 MEF2 MADS 1 5 
MA0062 NRF-2 ETS 6 10 
MA0076 SAP-1 ETS 5 9 

     
Scope 5: 12 Values    

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0028 Elk-1 ETS 4 9 
MA0042 HFH-3 FORKHEAD 7 12 
MA0048 Hen-1 bHLH 2 7 
MA0048 Hen-1 bHLH 6 11 
MA0058 Max bHLH-ZIP 4 9 
MA0062 NRF-2 ETS 2 7 
MA0076 SAP-1 ETS 2 7 
MA0076 SAP-1 ETS 3 8 
MA0079 SP1 ZN-FINGER_C2H2 3 8 
MA0079 SP1 ZN-FINGER_C2H2 4 9 
MA0088 Staf ZN-FINGER_C2H2 7 12 
MA0093 USF bHLH-ZIP 1 6 

     
Scope 6: 16 Values    

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0028 Elk-1 ETS 4 10 
MA0042 HFH-3 FORKHEAD 6 12 
MA0048 Hen-1 bHLH 3 9 
MA0050 Irf-1 TRP-CLUSTER 4 10 
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MA0051 Irf-2 TRP-CLUSTER 5 11 
MA0052 MEF2 MADS 3 9 
MA0058 Max bHLH-ZIP 3 9 
MA0062 NRF-2 ETS 2 8 
MA0062 NRF-2 ETS 3 9 
MA0062 NRF-2 ETS 4 10 
MA0076 SAP-1 ETS 1 7 
MA0076 SAP-1 ETS 2 8 
MA0093 USF bHLH-ZIP 1 7 
MA0107 p65 REL 1 7 
MA0107 p65 REL 3 9 
     
Scope 7: 23 Values    

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0014 Bsap PAIRED 5 12 
MA0018 CREB bZIP 3 10 
MA0027 EN-1 HOMEO 3 10 
MA0031 FREAC-4 FORKHEAD 1 8 
MA0033 FREAC-7 FORKHEAD 1 8 
MA0038 Gfi ZN-FINGER_C2H2 3 10 
MA0042 HFH-3 FORKHEAD 4 11 
MA0046 HNF-1 HOMEO 4 11 
MA0047 HNF-3beta FORKHEAD 4 11 
MA0051 Irf-2 TRP-CLUSTER 9 16 
MA0052 MEF2 MADS 1 8 
MA0052 MEF2 MADS 2 9 
MA0055 Myf bHLH 2 9 
MA0055 Myf bHLH 5 12 
MA0058 Max bHLH-ZIP 3 10 
MA0061 NF-kappaB REL 2 9 
MA0062 NRF-2 ETS 3 10 

MA0065 
PPARgamma-

RXRal NUCLEAR_RECEPTOR 9 16 
MA0073 RREB-1 ZN-FINGER_C2H2 2 9 
MA0088 Staf ZN-FINGER_C2H2 8 15 
MA0099 c-FOS bZIP 1 8 
MA0101 c-REL REL 3 10 
MA0107 p65 REL 2 9 

     
Scope 8: 8 Values    

PWM ID PWM Name Family 
Position 

1 
Position 

2 
MA0052 MEF2 MADS 1 9 
MA0052 MEF2 MADS 2 10 
MA0068 Pax-4 PAIRED-HOMEO 3 11 
MA0088 Staf ZN-FINGER_C2H2 1 9 
MA0088 Staf ZN-FINGER_C2H2 7 15 
MA0105 p50 REL 1 9 
MA0106 p53 P53 6 14 
MA0106 p53 P53 11 19 
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Abstract. The computational identification of DNA binding sites that
have high affinity for a specific transcription factor is an important prob-
lem that has only been partially addressed in prokaryotes and lower eu-
karyotes. Given the higher length of regulatory regions and the relative
low complexity of DNA binding signature, however, methods to address
this problem in higher order eukaryotes are lacking. In this paper, we
propose a novel computational framework, which combines cellular net-
work reverse engineering, integrative genomics, and comparative genomic
approaches, to address this problem for a set of human transcription fac-
tors. Specifically, we study the regulatory regions of putative orthologous
targets of a given transcription factor, obtained by reverse engineering
methods, in several mammalian genomes. Highly conserved regions are
identified by pattern discovery. Finally DNA binding sites are inferred
from these regions using a standard Position Weight Matrices (PWM)
discovery algorithm. By framing the identification of the PWM as an op-
timization problem over the two parameters of the method, we are able to
discover known binding sites for several genes and to propose reasonable
signatures for genes that have not been previously characterized.

Keywords: reverse engineering, comparative genomics, DNA binding
site analysis, pattern discovery, transcriptional regulation, systems
biology.

1 Introduction

Genome wide approaches have been increasingly successful in identifying reg-
ulatory interactions and in dissecting cellular networks from large microarray
expression profile sets and other high throughput data modalities. However, the
specific interactions between transcription factors (TFs) and their cognate cis
regulatory elements ultimately responsible for network behavior, remain largely
unmapped, especially in a mammalian context.

Transcription factor binding sites (TFBS) are often very degenerate and have
low information content. In a mammalian context, where regulatory regions can

G. Bourque and N. El-Mabrouk (Eds.): RECOMB-CG 2006, LNBI 4205, pp. 200–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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be thousands of kilobases long, the probability of finding any given TFBS by
chance, in a regulatory region is relatively high, making it difficult to assess en-
richment or to identify sites that have a functional role in vivo. As a consequence,
most recent advances in the field have resulted from increasingly sophisticated
approaches based on integrative and comparative genomics methods. These ei-
ther combine evidence from different clues (e.g. expression, ChIP-Chip data) or
from different organisms where the regulatory modules of specific genes are likely
to have been conserved through evolution [10].

Comparative genomics approaches, in particular, have been exceedingly help-
ful in increasing the specificity of regulatory elements identified by computa-
tional means. For instance, comparisons of human-mouse promoter regions of
co-regulated muscle-specific genes, dramatically reduced the sequence search
space, thus improving TFBS detection [24]. Several methods have further ex-
tended the use of comparative genomics methods in this context. For instance,
[15] increased the specificity of Gibbs sampling methods by biasing the search in
regions that are conserved in human-mouse and C. elegans-C. briggsiae genomes.
Within a single organism, [25] successfully mapped several yeast binding sites
by comparing aligned sequence profiles from several orthologous yeast genes. Fi-
nally, a few approaches have exploited knowledge of the phylogenetic distance
among input species [3,23].

Moving from individual genes (or co-regulated gene sets) to entire genomes, a
number of methods have also been proposed to identify over-represented motifs
that are likely to play a functional role. Genome-wide multiple alignment and
comparative analysis of several yeast species, for instance, yielded conserved and
over-represented functional sequences, both coding and non-coding [8,26]. Simi-
larly, comparisons of several vertebrate species provided systematic approaches
to discover functional elements in the human genome [28,20].

A limitation of some comparative genomics methods is that they generally
detect TFBSs in locally conserved regions, within pairwise or multiple sequence
alignments of orthologous promoter sequences. This approach is less effective
when these sequences are significantly divergent and may fail altogether if they
have undergone genomic rearrangements that do not preserve the sequence or-
der. To address some of these issues, the use of a non-alignment based method
to discover conserved regulatory regions has been suggested [9]. However, this
method is restricted to genome pairs.

Collectively, these methods have been increasingly successful in studying the
conservation or enrichment of DNA binding sequences in the regulatory sequence
of specific genes or even in genome wide fashion. However, by and large, they
do not address the discovery of transcription factor specific binding sites an
important open problem in biology. There are a few exceptions, which address
this problem in S.cerevisiae [29]. These, however, are not easily extended to
mammalian genomes for two reasons: (1) transcriptional regulation programs
in mammalian cellular networks are significantly more complex and (2) mam-
malian regulatory regions are significantly longer, thus resulting in much higher
background noise.
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In this paper, we propose a novel framework which combines cellular network
reverse engineering, integrative genomics, and comparative genomic approaches
to discover the statistical profile of DNA binding sites that are highly specific
for a given human TF, represented as Position Weight Matrices (PWM) [7].
Specifically, by using recent results on the reverse engineering of mammalian
regulatory networks, based on the information-theoretic ARACNE algorithm
[2,12,17], we identify high-probability putative targets of a human TF of interest.
These have been shown to be enriched in biochemically validated targets of the
TF. It is thus reasonable to expect that genes selected in this fashion will have
regulatory regions that are also enriched for bona fide TFBS of the corresponding
TF, thus increasing the signal to noise ratio. We show that for many TFs, such an
enrichment is sufficient to correctly identify a TF-specific DNA binding signature
by computational means.

Briefly, given a set of ni putative target genes of a given transcription fac-
tor inferred by ARACNE, the algorithm proceeds through the following steps:
first, for each target gene, the set of its orthologous regulatory regions from
several mammalian genomes (Human, Chimpanzee, Mouse, Rat, and Dog) is
assembled. This is called the Regulatory Region Set (RRS). Each RRS is then
explored in isolations using the SPLASH motif discovery algorithm [5] to gen-
erate a Local Conservation Map (LCM) at a desired percent coverage, nc. The
LCM includes the most conserved nc% of base pairs in the RRS. Then, the set
of Local Conservation Maps for all the ni putative targets, at a desired per-
cent coverage nc, is assembled into a Global Conservation Map (GCM). Finally,
the GCM is analyzed using the DME motif discovery algorithm [22] to identify
statistically significant Position Weight Matrices (PWM). The PWMs are opti-
mized over all possible values of (nt, nc), and the most statistically significant
PWMs are reported. This process is schematically illustrated in Fig. 1. Finally,
reported PWMs are compared to known TF motif in TRANSFAC, if available,
or validated via the literature. Pattern discovery based conservation maps are
introduced to overcome the limitations of alignment methods which may fail in
regions where overall conservation is low or where translocation events may have
produced a non alignable, yet overall conserved sequence.

We first test our approach on a set of six TFs with known TFBS, includ-
ing MYC, E2F1, TFDP1, IRF7, FOSL1 and NFkB2. Targets were obtained by
running ARACNE on a set of 254 microarray expression profiles of normal and
tumor related human B cells. To assess the decrease in algorithm performance
when ARACNE targets are used, as opposed to biochemically validated ones,
we also run the procedure on a set of validated MYC targets. Results show that
our approach is able to accurately identify the TFBS of 4 of the 6 genes (MYC,
E2F1, TFDP1 and IRF7 ) at a relatively low percent coverage. Furthermore, we
find that while the MYC PWM, which identifies the E Box CACGTG, is more
statistically significant when identified from the biochemically validated targets,
the E Box PWM is still clearly the most significant even when only ARACNE
targets are used.
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We then apply our method to two TFs whose TFBS have not yet been fully
characterized. These include BCL6 and HOXD13. The putative PWM for BCL6
matches a binding site identified by in vitro BCL6 binding assays . We also
report that the canonical PWM for FOSL1 and NFkB2 could not be recovered
as the most statistically significant ones. This is likely because these genes are
modulated at the post-translational level and thus ARACNE fails to provide a
set of putative targets that is significantly enriched in true targets of the TF.
For each TF we provide the set of genes that gives the most significant PWM
and the associated percent coverage.

This paper introduces a new comparative genomics approach that uses an
alignment-independent motif-discovery strategy to identify conserved elements
given a set of putative TF targets. Unlike most current approaches, it is not fixed
to an arbitrary percent coverage defined by global alignment. We find that, in
most cases, the method successfully discovers the PWM for a specific human TF
and the related high-confidence functional targets.

2 Methods

Our procedure is aimed at identifying high-affinity DNA binding sites for a given
human TF. We do so, by first selecting TF targets using the ARACNE reverse
engineering method, and then by integrating the information contained in the
mammalian orthologous promoters of the candidate targets into a global conser-
vation map (GCM). The GCM is then analyzed using a conventional position
weight matrix discovery algorithm [22]. The steps, which are schematically shown
in Figure 1, include:

1. Selection of set of nt putative targets of a given TF
2. Identification of orthologous regulatory regions in mammalian genomes
3. Generation of target-specific, local conservation maps (LCM) at a predefined

percent coverage, nc

4. Generation of a global conservation map (GCM) from the set of all LCMs,
5. Identification of the most statistically significant PWMs by motif discovery

in the GCM, and
6. optimization of the PWM enrichment p value across all values of the para-

meters (nt, nc).

Details of each step are given below.

2.1 Selection of Putative Targets of a Transcription Factor

Our method assumes that a candidate pool of targets of a specific human TF is
available. In the context of this paper these were generated either by mining the
literature data (only for the set of biochemically validated targets of MYC ) or by
network reverse engineering using the ARACNE algorithm [2,17]. Specifically,
the bootstrap version of ARACNE was used [18], which improves the quality
of the predictions with respect to the original version of the algorithm. Targets
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were inferred from a phenotypically rich collection of 254 microarray expression
profiles of normal and tumor related human B lymphocytes, also described in
[18]. Briefly, the bootstrap version of ARACNE builds a consensus network by
running the algorithm on a large number (n = 100) of distinct sets of 254
expression profiles. These are obtained by sub sampling the original dataset
with replacement. Interactions detected in at least k independent runs of the
algorithm are reported, with k chosen so that that the probability of a false
positive interaction (p value) is less than 5%, after multiple hypothesis testing.
The p-value is based on a null-hypothesis obtained by randomly permuting the
inferred edges in each bootstrapped network.

The genes corresponding to the 50 most statistically significant interactions
with each TF of choice are selected and ranked by the consensus score. Tar-
gets that are positively and negatively correlated with the TF are assembled in
separate sets and analyzed separately by our method, since the specific DNA
binding mechanism associated with target activation or repression by a TF is
usually distinct. For instance, target activation by MYC is mediated by an E-
Box while target repression by MYC, while not completely understood, is not
mediated by an E Box.

2.2 The Regulatory Region Sets

Given a rank-ordered set of nt targets of a human TF (either validated or pu-
tative), each target gene gTF

i is studied in isolation. Its coding sequence is first
aligned in the human, chimpanzee, dog, mouse and rat genomes. Subsequently
the transcription start site (TSS) is identified from the genome annotation in
each such sequence. When the TSS is not annotated for one organism, the corre-
sponding human mRNA, up to the TSS, is aligned with the organisms genome to
determine a putative location. The [2kb, +2kb] non-coding and repeat-masked
region (relative to the TSS) in each mammalian genome is finally selected as
an orthologous promoter. The set of such sequences for a specific target gene
is called a Regulatory Region Set, RRSTF

i = {gTF
ij , j = hs, ..., rr}, where the

index j indicates the specific genome. As additional well annotated mammalian
genomes become available, they can be easily incorporated into this step of the
analysis, thus further improving the signal to noise ratio.

2.3 Generating Gene-Specific, Local Conservation Maps

Each RSSTF
i set is then analyzed using the SPLASH motif discovery algorithm

to discover a set of statistically significant sparse motifs that are conserved across
at least three species, including H. sapiens. Reported motifs must have a min-
imum density of eight matching nucleotides in any window of ten nucleotides
and at least 8 matching nucleotides. Since SPLASH does not set any limits
on the maximum motifs length, very long (and thus highly statistically signif-
icant) sparse motifs may emerge in regions with relatively high cross species
conservation. The SPLASH discovery parameters were extensively studied and
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Fig. 1. Schematic diagram of our TF-centric approach to discover regulatory elements
using alignment-independent conservation maps. Step 1 identifies candidate targets
of a TF by ARACNE bootstrapping. In Step 2, the orthologous promoter sequences
are extracted. Step 3 generates gene-specific conservation maps varying over percent
coverage. Step 4 compiles a global conservation map over all targets with varying
percent coverage. The process is repeated for varying number of top-ranked targets.
Finally, Step 5, identifies the most significant PWM for a TF the relevant target genes
and the associated percent coverage.
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optimized for the MYC transcription factor. Sparser motif density (e.g. 6 con-
served nucleotides in any window of 10) resulted in an excessively large number
of reported motifs, thus increasing background noise. Higher densities (e.g. 8
conserved nucleotides in any window of 9 or greater) resulted in very few motifs,
thus increasing the likelihood that regions containing important regulatory ele-
ments may be missed. While a complete study of the SPLASH parameter space
for each TF is outside the boundary of this paper, this can be accomplished by
using sets of validated biological targets for a few known TFs. For this paper, we
optimized these parameters using the biochemically validated targets of MYC
and then we use these optimal parameters for the discovery of the PWM of the
other TFs. In particular, the same SPLASH parameters were used both to an-
alyze the biochemically validated targets of MYC and the ARACNE predicted
targets of all the studied TFs.

The SPLASH motifs Mi identified from a given RRS are then ranked based
on their statistical significance. Statistical significance is essentially a function
of the motif length (number of conserved nucleotides), nucleotide composition
(based on the frequency of each nucleotide in the set of sequences), and number
of orthologous sequences containing the motif.

Given the k most statistically significant SPLASH motifs for a Regulatory
Region Set, RSSTF

i , a human-centric Local Conservation Map LCMTF
i can be

trivially generated by selecting only the nucleotides covered by these motifs in
the RRS. We define the percent coverage nc of the Local Conservation Map as the
ratio between the total number of nucleotides in the map and the total number
of nucleotides in the full Regulatory Region Set. For instance, a 50% coverage
ratio indicates that approximately one half of the nucleotides of the original
Regulatory Region Set are retained in the Local Conservation Map. Clearly, a
variable percent coverage can be achieved by selecting a different number k of
significant motifs. The maximum possible coverage is achieved when additional
motifs are no longer statistically significant at the desired p value level or when all
the SPLASH motifs are exhausted. Conversely, given a desired percent coverage
(as long as it is not too large), a number of motifs k can be chosen such that
the closest coverage value is achieved in the Local Conservation Map. Thus,
for each desired coverage, nc, two local conservation maps can be created from
each transcription factor TF, LCMTF+

i (nc) and LCMTF−
i (nc), corresponding

respectively to the activated and to the repressed (putative) targets of the TF.

2.4 Generating a Global Conservation Map

Given a TF, a percent coverage nc, and a number of putative targets nt, the
local conservation maps for all the putative human targets activated or re-
pressed by the TF (LCMTF±

1 (nc),...,LCMTF±
nt (nc)) are pooled together into

two Global Conservation Maps for the transcription factor, GCMTF+ (nc, nt)
and GCMTF− (nc, nt). A variety of different methods can then be used to iden-
tify binding sites that are enriched in either GCM, compared to a background
of random promoters. We used the Discriminative Matrix Enumerator method
(DME) [22] to search for over-represented PWMs spanning respectively six, eight
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and nine nucleotides. DME is especially suited to detect matrices that may be
highly degenerate and have sparse occurrences. We ranked the list of PWMs
generated by DME based on statistical significance relevant to our context. The
statistical significance of each discovered PWM is evaluated based on the ex-
pected vs. actual number of matches of the PWM in the Global Conservation
Map, at the specific coverage nc. The expected background frequency of the
motif (null hypothesis) is determined from a set of 9,000 non-coding promoters
representing all the unique genes on the HU95Av2 Affymetrix chip used to gen-
erate the expression data. The statistical significance is then determined using
the hypergeometric distribution.

2.5 Identification of the Most Significant PWM and the Relevant
Target Genes

If the putative targets detected by ARACNE are enriched in true targets and if
a PWM is functionally significant, a trend should emerge where the statistical
significance of the PWM first increases as a function of nt (as more true targets
are added) and then starts to decrease as more and more false positives start
to be included. Similarly, as we change the percent coverage, nc, we should see
a similar trend since for low nc values bona fide sites may be missed, while for
large values of nc the background noise becomes dominant.

For each Global Conservation Map, GCMTF± (nc, nt), we thus determine
the values of nt = n∗1

t , n∗2
t and nt = n∗1

t , n∗2
t yielding the two most statistically

significant, non-identical PWMs and report the corresponding PWMs, PWMTF
∗1

and PWMTF∗2 . These are then compared against known PWM for the TF or
further validated as putative profiles for a novel binding site.

2.6 Comparison of PWMs

To compare two matrices, the KL-divergence score is computed in all possible
relative reference frames. The score is zero for identical matrices; the more differ-
ent the two matrices, the higher the KL-divergence [21]. Values below 1.0 reflect
substantial identity of the matrix composition.

3 Results

In this section, we report the optimal PWMs identified by our approach for
eight TFs. We chose six TFs whose binding sites have been well-characterized
(MYC, E2F1, TFDP1, IRF7, FOSL1 and NFkB2 ) and two TFs which do not
have well-characterized binding sites (BCL6 and HOXD13 ). A key requirement
is that these TFs must have a sufficient number of ARACNE inferred targets to
support our statistical analysis. We arbitrarily set that threshold at 50 targets
but we find that the correct matrix could be identified with as few as 10 tar-
gets. We studied the positively-correlated and negatively-correlated target genes
separately as they might lead to clues to distinct mechanisms of transcription
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regulation. For each regulatory region set (RSS) we report the two most signif-
icant PWMs and show that in most cases the correct PWM is reported as one
of these two matrices (often the most significant one).

We compare the discovered PWMs to TRANSFAC (version 10.1) and JAS-
PAR databases (version 2004) and found that for four of the six tested TFs
(MYC, E2F1, TFDP1, IRF7 ) the discovered PWM matched the known ones at
high specificity (s < 1.0) in the expected set of targets (activated or repressed).
For instance, for MYC the correct PWM was found in the activated targets,
which is known to be mediated by an E-Box.

Interestingly, most of the other discovered PWMs (i.e. those not matching the
TF) match the profile of some other well-characterized binding sites in TRANS-
FAC or JASPAR, revealing possible combinatorial regulation mechanisms. For
two transcription factors (NFkB2 and FOSL1 ) none of the discovered PWMs
matched the known one. We present and discuss some of the DNA binding pro-
files in more detail. The complete set of discovered PWMs, matched matrices
and significance values are shown in Table 1.

3.1 Transcription Factors with a Previously Known PWM

MYC : We tested our approach on the positively correlated (activated) and nega-
tively correlated (repressed) putative targets of the MYC proto oncogene. Analy-
sis of the positively-correlated targets yields the well-known binding site (E-box)
as the optimal PWM for both tested motif lengths (w = 6 and w = 8). The opti-
mal statistical significance was obtained for nt = 30 top-ranked putative targets
by ARACNE and nc =12). Figure 2 shows the statistical significance of the
PWM enrichment as a function of both nt and nc. The second most significant
motif of length 6 matches the known ELK1 motif. ELK1 is a member of the
ETS oncogene family. Recently, researchers have suggested that a novel ETS
transcription factor TEL2 and MYC cooperate in development of many human
B-cell malignancies [4]. This analysis suggests that ELK1 may play a similar
combinatorial role in the transcriptional regulation of some MYC targets ex-
pressed in B cells. The second most significant motif of word length 8 matched
to RFX1 which has been implicated in transcriptional downregulation of MYC
[19] and may thus form a feed-forward loop with MYC.

As expected, the two most significant PWMs (both for lengths 6 and 8) from
the negatively correlated MYC targets do not match the E-box nor any other
known DNA binding motif. This suggests that repression by MYC is mediated
by a distinct and yet to be defined transcriptional regulation mechanism. The
discovered matrices may thus help elucidate such a mechanism.

We also performed this analysis with a set of validated MYC targets (see
Supplemental Information). As expected, the significance value is high even for
nt = 10 target genes and increases modestly as more validated genes are included
(Figure 3).

E2F1 : Analysis of the positively correlated E2F1 targets shows that the
most significant PWMs match the known binding profiles of MYC and E2F1.
The PWMs were discovered with target genes and nc% coverage. These two
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Fig. 2. Significance of a discovered PWM as a function of number of genes and percent
coverage in ARACNE predicted targets of MYC (nt = 30 and nc = 12)
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Fig. 3. Significance of a discovered PWM as a function of number of genes and percent
coverage in validated targets of MYC. There is a steady increase in significance as more
validated targets are added to the gene set (nc = 20 and nt = 21).

transcription factors have been known to cooperate in activation of human can-
cers [11]. E2F1 is known to act as a repressor in some cases. As expected,
the analysis of negatively-correlated targets does not yield PWMs that match
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any previously characterized motifs. The method suggests two alternate mo-
tifs GAAKCKGVY (nt = 25 and nc = 16) and CDRTCCGHG (nt = 26 and
nc = 32) as possible binding sites for this mechanism.

TFDP1 : E2F factors bind to DNA as homodimers or heterodimers in associ-
ation with dimerization partner DP1. TFDP1 is an example of such a family of
related transcription factors. Not surprisingly, the BTTVGCGCS motif discov-
ered by the analysis from the positively-correlated target genes, with nt = 30
and nc = 5, is a close match to the previously known motifs for both E2F1 and
TFDP1. Very few targets were predicted to be negatively-correlated targets of
TFDP1 and were thus not suited for our analysis.

IRF7 : We identified the known binding motif for IRF7 as the top motif for
word lengths 6, 8 and 9. For word length 9, the PWM was identified with nt = 11
and nc = 30%. Analysis on the negatively-correlated targets of IRF7 yielded
PWMs with matches to several ubiquitous TFs e.g. SP1 and LXR-alpha.

FOSL1 and NFkB2 : We were unable to identify the known motifs of both
FOSL1 and NFKB2. Most likely, the ARACNE inferred targets of these two
genes are not sufficiently enriched in their true transcriptional targets. This is
generally the case when the transcriptional regulation of a gene is significantly
mediated by post-translational events and thus the mRNA concentration does
not correlate with target expression.

3.2 Transcription Factors Without a Previously Unknown PWM

BCL6 : BCL6 is a transcriptional repressor whose activity is important in the
creation of the Germinal Center and in formation of non-Hodgkins B cell lym-
phomas [6]. Thus, as expected, the PWMs discovered in the positively-correlated
targets do not match any known TRANSFAC or JASPAR motif. Analysis of the
negatively-correlated targets, on the other hand, reveals that the second most
significant PWM of length w = 9 (TTYCYAGRM) , with nt = 20 and nc = 29
closely matches a known BCL6 binding site discovered from in vitro binding
assays [6]. We have identified a subset of the ARACNE-predicted BCL6 targets
based on the strength of correlation and number of hits of the discovered mo-
tif. Chromatin immunoprecipitation assays are being performed to test whether
these genes are true targets of BCL6.

HOXD13 : HOXD13 belongs to the homeobox family of TFs. In mammals,
knowledge of the genetic pathways, including the possible direct or indirect
targets, regulated by HOX proteins is extremely limited [27]. Analysis on the
positively-correlated targets of HOXD13 did not yield a close match to previ-
ously characterized motifs. However, the negatively correlated targets allowed
the identification of a PWM (GDSVAGGTG with nt = 28 and nc = 17), which
is very similar to that of AREB6, a zinc-finger homeodomain enhancer-binding
protein. Further analysis of this PWM can possibly help understand the details
of HOXD13 protein function.
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4 Discussion

Discovery of DNA binding profiles that are specific to a given TF is still an open
problem in mammalian biology. Specifically, we are unaware of any previous
method that has been successful in the identification of the binding site of a
specific TF in a mammalian context.

We report a systems biology approach that combines network reverse engi-
neering, comparative genomics, and bioinformatics analysis which is successful
in identifying the correct binding site for a significant number of the tested TFs.
The method is computationally intensive, requiring several hours to fully explore
the parameter space and to identify the optimal PWM. As a result, a genome
wide analysis of all transcription factors exceeds the scope of this paper. Thus,
we limit our analysis to 8 representative transcription factors. Six of these (MYC,
E2F1, TFDP1, IRF7, FOSL1 and NFkB2 ) have a known DNA binding profile
in either TRANSFAC or JASPAR, while the remaining 2 (BCL6 and HOXD13 )
are not well characterized although a few instances of the DNA binding site are
known for BCL6.

We show that for 4 of the 6 previously characterized transcription factors, our
approach is successful in discovering PWMs that closely match the previously
known profiles. For BCL6 we show that the inferred PWM matches a previously
known binding site instance. In addition, for HOXD13 negatively-correlated tar-
gets we identify a PWM that matches (albeit with some variability) with the
known motif for another homeodomain protein.

The new approach innovates on previous methods in several ways: while sets
of co-regulated genes were used before to identify binding sites, this is the first
method that relies on a network reverse engineering algorithm (ARACNE) to
identify putative targets of a known transcription factor for further analysis. This
allows to causally link the discovered profile with a specific transcription factor.
Additionally, rather than relying on sequence alignment, the method uses pattern
discovery to identify regions that are highly conserved across orthologous pro-
moter regions in several mammalian genomes. Finally, rather than using ad-hoc
parameters, the method systematically explores the parameter space to discover
the most statistically significant PWMs. This optimization step is critical, as it
is difficult to find a single set of parameters that would perform uniformly across
the set of tested transcription factors.

The method has several limitations and could be improved in several ways.
First of all, if the set of putative targets is not enriched in bona fide targets of
the TF, then DNA binding motif discovery is compromised. This is especially
likely to happen for transcription factors that are constitutively expressed and
regulated at the post-translational level. For these, the mRNA concentration
of the TF is not strongly correlated to the activation/repression of its targets
and thus the ARACNE method would likely produce putative target set that
are not sufficiently enriched in bona fide targets. Thus, any improvements in
the reverse engineering of transcriptional networks will directly translate into
improved performance of the proposed method. A second issue is that the algo-
rithm may identify binding sites associated with co-factors that may be equally
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or even more enriched in the specific subset of targets generated by ARACNE.
As a result, we recommend that the top two or three PWMs, for each tested
length (w = 6, 8) are considered and validated as candidate binding site pro-
files. Conversely, the method may be useful in identifying co factor binding sites,
suggesting a possible cooperative regulation mechanism.

Acknowledgments. We thank Andrew Smith, Kai Wang, Wei Keat Lim and
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Abstract. Prokaryotic organisms share genetic material across species
boundaries by means of a process known as horizontal gene transfer
(HGT). Detecting this process bears great significance on understand-
ing prokaryotic genome diversification and unraveling their complexities.
Phylogeny-based detection of HGT is one of the most commonly used
approaches for this task, and is based on the fundamental fact that HGT
may cause gene trees to disagree with one another, as well as with the
species phylogeny. Hence, methods that adopt this approach compare
gene and species trees, and infer a set of HGT events to reconcile the
differences among these trees.

In this paper, we address some of the identifiability issues that face
phylogeny-based detection of HGT. In particular, we show the effect of
inaccuracies in the reconstructed (species and gene) trees on inferring the
correct number of HGT events. Further, we show that a large number of
maximally parsimonious HGT scenarios may exist. These results indicate
that accurate detection of HGT requires accurate reconstruction of indi-
vidual trees, and necessitates the search for more than a single scenario
to explain gene tree disagreements. Finally, we show that disagreements
among trees may be a result of not only HGT, but also lineage sort-
ing, and make initial progress on incorporating HGT into the coalescent
model, so as to stochastically distinguish between the two and make an
accurate reconciliation. This contribution is very significant, particularly
when analyzing closely related organisms.

1 Introduction

Whereas eukaryotes evolve mainly though lineal descent and mutations, bacteria
obtain a large proportion of their genetic diversity through the acquisition of
sequences from distantly related organisms via horizontal gene transfer (HGT);
e.g., see [4,19]. There has been a big “ideological and rhetorical” gap between the
researchers believing that HGT is so rampant that a prokaryotic phylogenetic
tree is useless and those who believe HGT is mere “background noise” that does
not affect the reconstructibility of a phylogenetic tree for bacterial genomes.
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Supporting arguments for these two views have been published. For example,
the heterogeneity of genome composition between closely related strains (only
40% of the genes in common with three E. coli strains [29]) supports the former
view, whereas the well-supported phylogeny reconstructed by Lerat et al. from
about 100 “core” genes in γ-Proteobacteria [13] gives evidence in favor of the
latter view. Nonetheless, regardless of the views and the accuracy of the various
analyses, there is a consensus as to the occurrence of HGT and the evolutionary
role it plays in bacterial genome diversification. Further, HGT is a main process
by which bacteria develop resistance to antibiotics (e.g., [5]), is considered a
primary explanation of incongruence among gene phylogenies, and is a significant
obstacle to reconstructing the Tree of Life [3].

The HGT detection problem concerns the detection of the genes that are
horizontally transferred into the genome, the donors and recipients of every hor-
izontally transferred gene, and the number of HGT events that occurred during
the evolutionary history of a set of species. When HGT occurs, the evolution-
ary history of the gene(s) involved does not necessarily agree with that of the
species phylogeny. This observation is the fundamental basis of the phylogeny-
based HGT detection approach: trees for individual genes are reconstructed (and
sometimes a species tree is reconstructed as well, using other data), and their dis-
agreements are identified to estimate the number (how many) as well as locations
(donors and recipients) of HGT events. Beside the computationally challeng-
ing problem of quantifying disagreements among trees for the sake of detecting
HGT, major challenges that face this approach include (1) determining whether
the disagreements are indeed due to HGT, and (2) whether there is a unique
HGT “scenario”. Yet, these two challenges encompass a host of issues of which
we address three. First, since trees are at best partially known, they have to
be reconstructed using a phylogeny reconstruction method. We investigate the
impact that the quality of reconstructed trees has on HGT detection. Second,
under the assumption that HGT is actually the source of tree disagreements, we
investigate the uniqueness of a solution to the HGT detection problem. Finally,
among closely related species, lineage sorting due to random genetic drift may
also cause tree incongruence, thus mimicking the effects of HGT on phylogenies.
In this case, accurate HGT detection requires determining the actual cause of
tree incongruities, and making the appropriate reconciliation. We make prelimi-
nary progress on incorporating HGT into the coalescent model, so as to produce
a stochastic framework for classifying population-level events (such as lineage
sorting) and species-level events (such as HGT).

We draw several conclusions from this work. First, to obtain accurate esti-
mates of HGT based on tree incongruence, poorly supported edges of recon-
structed trees should be removed; this is a hard task, but is very important to
conduct. Second, eliminating statistical error from reconstructed trees leads to
non-binary trees, and hence phylogeny-based HGT detection methods should
be designed to handle such trees (rather than focus on binary trees, which
many existing tools do). Third, more than one maximally parsimonious solu-
tion (a solution that has the minimum number of HGT edges, or events, to
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explain the species and gene tree incongruence) may exist, and hence HGT
detection methods should search for all such solutions. Finally, trees may be
incongruent due to processes other than HGT; hence, classifying the sources of
incongruence and reconciling them accordingly is imperative.

2 Tree Incongruence and HGT Detection

A gene tree is a model of how a gene evolves. As a gene at a locus in the genome
replicates and its copies are passed on to more than one offspring, branching
points are generated in the gene tree. Because the gene has a single ancestral
copy, barring recombination, the resulting history is a branching tree [14]. Thus,
within a species, many tangled gene trees can be found, one for each nonrecom-
bined locus in the genome. Exploring incongruence among gene trees is the basis
for phylogeny-based HGT detection and reconstruction.

We illustrate some of the scenarios that may lead to gene tree incongruence
in Figure 1. The species tree is represented by the “tubes”; it has A and B as
sister taxa whose most recent common ancestor (MRCA) is a sister taxon of C.

In the case of HGT, shown in Figure 1(a), genetic material is transferred
from one lineage to another. Sites that are not involved in a horizontal transfer
are inherited from the parent while other sites are horizontally transferred from
another species. Figure 1(b) gives an example of a gene tree that disagrees with
the species phylogeny because of lineage sorting due to random genetic drift: the
genes of B and C coalesced before their MRCA coalesced with the gene of species
A. Moreover, sometimes multiple events “cancel out” one another’s effects when
co-occurring in the same dataset; for example, in Figure 1(c), lineage sorting
“hides” the incongruence between the species and gene trees (tree topologies)
that would have resulted from the HGT event. Another factor that may lead to
gene and species tree disagreements is that trees reconstructed by phylogenetic
methods may not be completely accurate (we refer to this as statistical error
in the trees); hence, disagreements among trees due to such inaccuracies may
trigger HGT “signal”, thus leading to overestimation of the actual HGT events.

A B C
ga gb

gc

A B C
ga gb gc

A B C
ga gb

gc

x

(a) (b) (c)

Fig. 1. (a) Gene tree that disagrees with the species tree due to (a) HGT from C to
B and (b) lineage sorting due to random genetic drift. In (c), the effect of the HGT
event (from B to C) is “canceled out” by random genetic drift, resulting in congruent
species and gene trees.
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Notice that in the case of lineage sorting, the species phylogeny is still a tree,
and the gene trees should be reconciled within its branches. However, in the
case of HGT, the evolutionary history of the species genomes may not be repre-
sented by phylogenetic trees; rather, phylogenetic networks are the appropriate
model [16,12]. The phylogeny-based HGT detection problem seeks the phyloge-
netic network with minimum number of reticulation nodes, e.g., HGT edges, to
reconcile the species and gene trees. The minimization simply reflects a maxi-
mally parsimonious solution: in the absence of any additional biological knowl-
edge, the simplest solution is sought. In the case, the simplest solution is one
that invokes the minimum number of HGT events to explain tree incongruence.
There has been a large body of work on this problem; e.g., see [7,18,2,17,15].

3 The Effect of Statistical Error on HGT Detection

In this section we investigate, through simulations, the effect of error in the
reconstructed trees on the detection of HGT. In particular we consider the mini-
mum number of HGT events inferred by HGT detection methods, as well as the
number of such maximally parsimonious solutions found by these methods.

Experimental Setting. We used the r8s tool [25] to generate four random birth-
death phylogenetic trees, Ti, i ∈ {10, 25, 50, 100}, where i denotes the
number of taxa in the tree. The r8s tool generates molecular clock trees; we
deviated the trees from this hypothesis by multiplying each edge in the tree
by a number randomly drawn from an exponential distribution. The expected
evolutionary diameter (longest path between any two leaves in the tree) is 0.2.
Then, from each model “species” tree Ti, we generated five different “gene”
trees, Ti,j, j ∈ {1, 2, 3, 4, 5}, where j denotes the number of subtree prune
and regraft (SPR) moves applied to Ti to obtain Ti,j .1 For each Ti and Ti,j ,
i ∈ {10, 25, 50, 100} and j ∈ {1, 2, 3, 4, 5}, and for each sequence length � ∈
{250, 500, 1000, 2000, 4000, 8000}, we generated 30 DNA sequence alignments
S�

i [k] and S�
i,j [k], 1 ≤ k ≤ 30, whose evolution was simulated down their corre-

sponding trees under the GTR+Γ+I (gamma distributed rates, with invariable
sites) model of evolution, using the Seq-gen tool [20]. We used the parameter
settings of [30]. Then, from each sequence alignment, we reconstructed a tree
TNJ using the Neighbor Joining (NJ) method [24], and another tree using a
maximum parsimony heuristic as implemented in PAUP∗ [26]. Since the maxi-
mum parsimony heuristic may return a set of optimal trees, for each alignment
we only considered the strict consensus of each such set, and referred to that as
the tree TMP . At the end of this process we had 4 trees Ti, 20 trees Ti,j, 720
NJ trees TNJ�

i [k], 3600 NJ trees TNJ�
i,j[k], 720 MP trees TMP �

i [k], and 3600
MP trees TMP �

i,j[k] (i ∈ {10, 25, 50, 100}, j ∈ {1, 2, 3, 4, 5}, 1 ≤ k ≤ 30, and
� ∈ {250, 500, 1000, 2000, 4000, 8000}). To compute minimal HGT scenarios as
well as the number of such scenarios, we applied two methods to pairs of species
and gene trees: LatTrans [7,1] and RIATA-HGT [17] (we modified the latter

1 An SPR move simulates an HGT event.
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tool so that it computes multiple solutions, rather than a single solution as was
originally described by the authors). Both tools were applied to three different
types of pairs of trees.

Type I pairs (Ti, Ti,j): in this case, the species and gene trees are assumed
to be correct.
Type II pairs (Ti, TNJ�

i,j[k]) and (Ti, TMP �
i,j[k]): in this case, the species

tree is correct, and the gene trees are estimated (using NJ and MP, respec-
tively).
Type III pairs (TNJ�

i [k], TNJ�
i,j[k]) and (TMP �

i [k], TMP �
i,j[k]): in this

case, both the species and gene trees are inferred.

The goal of running the methods in these different ways is to estimate the error
due to inaccuracy in the different trees. Due to space limitations, we only show
results using NJ trees, 25-taxon trees (Since LatTrans cannot handle non-binary
trees, it was not run on MP trees). In each run of a tool on a pair of trees,
we computed two values: the number of inferred HGT events, and the number
of such scenarios (or solutions) found by the method. In Type II and Type III
pairs, we report the average of all 30 runs for each combination of i, j, and �.

3.1 The Effect of Statistical Error on Estimating the Number of
HGT Events

Both LatTrans and RIATA-HGT computed the correct number of SPR moves
(i.e., HGT edges) when applied to Type I pairs. In other words, when both the
species and gene trees were correct, both methods made an accurate estimation
of the number of HGT events. The performance of both methods, in terms of the
number of inferred HGT events, on Type II and Type III pairs of trees is shown
in Fig. 2. Figs. 2(a) and 2(b) show that when the species tree is accurate, and
the gene tree is inferred, both methods accurately estimate the number of HGT
events for the case of 5 HGT events when the sequences are of length 8000. They
overestimate the number for all other cases, at all sequence lengths. As the se-
quence length increases, the trees inferred by NJ become more accurate, since NJ
is statistically consistent, and hence the improvement in the performance of the
methods as the sequence length increases. At sequence length 250, the methods
have the worst performance. When both the species and gene trees are inferred,
the overestimation becomes larger, as shown in Figs. 2(c) and 2(d). In this case,
even at sequence length 8000 the methods do overestimate the actual number
of HGT events. It is worth noting that both methods have almost identical per-
formance in terms of the number of HGT events inferred (RIATA-HGT does
slightly better in some cases at sequence length 1000). However, RIATA-HGT
is orders of magnitude faster. Given that the two methods accurately estimated
the number of HGT events in Type I pairs of trees, i.e., accurate species and
gene trees, the results show that error in inferred trees (one or both) leads to
overestimation of the number of HGT events. The overestimation is even larger
for the larger data sets (50- and 100-taxon trees). Therefore, it is important to
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Fig. 2. The number of HGT events inferred by LatTrans and RIATA-HGT, as a func-
tion of the sequence length. Each curve corresponds to one of the five actual numbers of
HGT events: �: 1 HGT; �: 2 HGTs; +: 3 HGTs; ×: 4 HGTs; and ◦: 5 HGTs. 25-taxon
trees inferred using NJ.

eliminate statistical error from trees before estimating HGT events. Ruths and
Nakhleh [23] have studied the performance of various methods for eliminating
wrong edges while maintaining accurate ones. This elimination, in the form of
contracting poorly supported edges, leads to non-binary trees, which cannot be
handled by LatTrans, although they can be handled by RIATA-HGT. Therefore,
a second conclusion is that phylogeny-based HGT detection methods should be
designed to handle both bi- and multi-furcating trees.

3.2 The Uniqueness of HGT Scenarios

Moret et al. [16] showed that a phylogenetic network that reconciles two trees
need not be unique, by showing two phylogenetic networks with a single retic-
ulation event that reconcile the same pair of trees. Further, they showed how
branch lengths could be used to resolve the non-uniqueness question in this sim-
ple case. Here we show that the number of possible maximally parsimonious
(with minimum number of HGT events) phylogenetic networks that reconcile
a pair of trees may actually be exponential. Further, we discuss when branch
lengths may not be sufficient to resolve the non-uniqueness issue.
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The number of maximally parsimonious HGT scenarios that reconcile a pair
of trees (species and gene trees, for example) may be exponentially large, as
illustrated in Fig. 3. The species and gene trees in the figure, ST and GT ,
respectively, contain 3k leaves and differ in that Xi2 is closer to Xi1 than to
Xi3 in tree ST , and closer to Xi3 than to Xi1 in tree GT , for 1 ≤ i ≤ k.
For every triplet 〈Xi1, Xi2, Xi3〉 of taxa, one of three HGT edges is needed to
reconcile the difference in topologies of the triplet based on the two trees ST
and GT : (1) the edge Hi1 : Xi3 → Xi2, (2) the edge Hi2 : Xi2 → Xi3, or (3)
the edge Hi3 : mi → Xi1, where mi is the edge incoming into the most recent
common ancestor (node) of the triplet of taxa; these three scenarios are shown
in Fig. 4. To reconcile the differences among all k triplets, there are 3k HGT
scenarios, since there are k triplets to reconcile, and for each triplet there are
three possible reconciliations. Two observations are in order. First, since the
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ST GT

Fig. 3. A species tree ST and a gene tree GT with 3k leaves. The two trees differ in k
places: the species tree has Xi1 and Xi2 as siblings, whereas the gene tree has Xi2 and
Xi3 as siblings (1 ≤ i ≤ k). There are 3k maximally parsimonious HGT scenarios that
reconcile the two trees.

donor and recipient of a gene have to co-exist in time [16], and given that the
topology of a phylogeny defines a partial order on the set of extant and ancestral
taxa (ancestral taxa precede their descendants in this partial order), it follows
that edge Hi3 can be part of an HGT solution only if certain taxa went extinct
or were not sampled. This case is illustrated in Fig. 4, where the dashed line
represents the lineage for taxon Xi which is not present in the set of taxa under
consideration but whose existence must be invoked to explain the HGT edge
Hi3.

Let δST and δGT be the pairwise distance matrices of the set of taxa based
on the species and gene trees ST and GT , respectively, in Fig. 3, and let us
consider the triplet of taxa in Fig. 4. There are three cases. (1) The scenario Hi1
is plausible if and only if δST (Xi1, Xi3) ≈ δGT (Xi1, Xi3) and δST (Xi1, Xi2) �≈
δGT (Xi1, Xi2). (2) The scenario Hi2 is plausible if and only If δST (Xi1, Xi2) ≈
δGT (Xi1, Xi2). (3) The scenario Hi3 is plausible if and only if If δST (Xi2, Xi3) ≈
δGT (Xi2, Xi3). Since the conditions in the three cases are mutually exclusive, it
follows the branch lengths, when estimated accurately, can be used to correctly
resolve the non-uniqueness issue in this case. However, estimating branch lengths
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Fig. 4. The three possible scenarios for reconciling the topologies of the triplet
〈Xi1, Xi2, Xi3〉 based on the species and gene trees, ST and GT respectively, in Fig. 3.

to a high degree of accuracy such that the above three cases are distinguished
accurately is a very challenging task. Further, even if branch lengths are esti-
mated accurately, if the evolutionary distance between the donor and recipient
is very small, distinguishing among the cases becomes more challenging.

In our simulation study, we looked at the number of maximally parsimonious
solutions that were computed by LatTrans and RIATA-HGT; the results for 25-
taxon NJ trees are shown in Fig. 5. All fours graphs show that, regardless of
whether the actual or inferred species trees are used, both methods estimate a
large number of maximally parsimonious solutions. The figures show that the
number decreases as the sequences used become longer. When we ran the meth-
ods on the actual trees (Type I pairs of trees), both of them returned single
solutions. A plausible conclusion is that as the amount of statistical error in
the inferred trees increases, so does the number of maximally parsimonious so-
lutions. The reason for behind this is that for shorter sequence lengths, the
accuracy of the trees is poorer, i.e., they have more wrong edges. These wrong
edges give an indication of more HGT events. This indication, though false, leads
to larger numbers of solutions since more reconciliations become possible. The
peaks around sequence lengths 1000 and 2000 in Fig. 5 coincide with the peaks
in Fig. 2, which gives an indication that as the number of inferred HGT events
increases, so does the number of possible solutions. An important conclusion is
that phylogeny-based HGT detection methods should be designed to compute
“all” possible solutions. As illustrated in Fig. 3, the number of such solutions
may be exponential, though. A measure that assigns support to these solutions
is imperative, so that they can be rank ordered.

4 Incorporating HGT into the Coalescent

As we described in Section 2, phylogenetic incongruence may occur due to various
processes, of which HGT is only one. Another such process is lineage sorting,
whose effect and confusing signal to HGT detection is particularly important
when analyzing genes of closely related organisms. In this section, we augment
the coalescent model by incorporating HGT, thus providing a framework for
stochastically distinguishing among these two processes as the actual source of
phylogenetic incongruence.

Lineage sorting occurs because of random contribution of each individual to
the next generation. Some fail to have offsprings while some happen to have
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Fig. 5. The number of minimal HGT scenarios inferred by LatTrans and RIATA-HGT
as a function of the sequence length. Each curve corresponds to one of the five actual
numbers of HGT events: �: 1 HGT; �: 2 HGTs; +: 3 HGTs; ×: 4 HGTs; and ◦: 5
HGTs. 25-taxon trees inferred using NJ.

multiple offsprings. In population genetics, this process was first modeled by R.
A. Fisher and S. Wright, in which each gene of the population at a particular gen-
eration is chosen independently from the gene pool of the previous generation,
regardless of whether the genes are in the same individual or in different indi-
viduals. Under the Wright-Fisher model, “the coalescent” considers the process
backward in time [11,9,27]. That is, the ancestral lineages of genes of interest
are traced from offsprings to parents. A coalescent event occurs when two (or
sometimes more) genes are originated from the same parent, which is called the
most recent common ancestor (MRCA) of the two genes.

The basic process can be treated as follows. Consider a pair of genes at time
τ1 in a random mating haploid population. The population size at time τ is
denoted by N(τ). The probability that the pair are from the same parental gene
at the previous generation (time τ1 + 1) is 1/N(τ1 + 1). Therefore, starting at
τ1, the probability that the coalescence between the pair occurs at τ2 is given by

Prob(τ2) =
1

N(τ2)

τ2−1∑
τ=τ1+1

(
1 − 1

N(τ)

)
. (1)
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T0

T1

Species A Species B Species C

T2

MRCA(B,C)

MRCA(A,B,C)

Fig. 6. An illustration of the coalescent process in a three species model with discrete
generations. The process is considered backward in time from present, T0, to past.
Circles represent haploid individuals. We are interested in the gene tree of the three
genes (haploids) from the three species. Their ancestral lineages are represented by
closed circles connected by lines. A coalescent event occurs when a pair of lineages
happen to share a single parental gene (haploid).

When N(τ) is constant, the probability density distribution (pdf) of the coa-
lescent time (i.e., t = τ2 − τ1) is given by a geometric distribution, and can be
approximated by an exponential distribution for a large N :

Prob(t) =
1
N

e−t/N . (2)

The coalescent process is usually ignored in phylogenetic analysis, but has a
significant effect (causing lineage sorting) when closely related species are con-
sidered [8,28,21]. The situation of Fig. 1(b) is reconsidered under the framework
of the coalescent in Fig. 6. Here, it is assumed that species A and B split T1 = 5
generations ago, and the ancestral species of A and B and species C split T2 = 19
generation ago. The ancestral lineage of a gene from species A and that from B
meet in their ancestral population at time τ = 6, and they coalesce at τ = 35,
which predates T2, the speciation time between (A, B) and C. The ancestral lin-
eage of B enters in the ancestral population of the three species at time τ = 20,
and first coalesces with the lineage of C. Therefore, the gene tree is represented
by A(BC) while the species tree is (AB)C. That is, the gene tree and species
tree are “incongruent”. Under the model in Fig. 6, the probability that the gene
tree is congruent with the species tree is 0.85, which is one minus the product of
the probability that the ancestral lineages of A and B do not coalesce between
τ = 6 and τ = 9, and the probability that the first coalescence in the ancestral
population of the three species occur between (A and C) or (B and C). The
former probability is 14

15
12
13

11
12 ...78

7
8 = 0.22 and the latter is 2

3 .
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Fig. 7. (a) The probabilities of the three types of gene tree, (AB)C, (AC)B, and A(BC),
as functions of (T2 − T1)/N . (b) The probabilities that the gene tree is resolved from
DNA sequence data. The probabilities are given as functions of the mutation rate for
the three types of tree, (AB)C, (AC)B, and A(BC), when (T2 − T1)/N = 0.5. The
white regions represent the probabilities that the gene tree is not resolved.

Under the three-species model (Fig. 6), there are three possible types of
gene tree, (AB)C, (AC)B and A(BC). Let Prob[(AB)C], Prob[(AC)B] and
Prob[A(BC)] be the probabilities of the three types of gene tree. These three
probabilities are simply expressed with a continuous time approximation when
all populations have equal and constant population sizes, N , where N is large:

Prob[(AB)C] = 1 − 2
3
e−(T2−T1)/N , (3)

and
Prob[(AC)B] = Prob[A(BC)] =

1
3
e−(T2−T1)/N . (4)

Figure 7(a) shows the three probabilities as functions of (T2 − T1)/N .
It is important to notice that the estimation of the gene tree from DNA

sequence data is based on the nucleotide differences between sequences, and that
the gene tree is sometimes unresolved. One of the reasons for that is a lack of
nucleotide differences such that DNA sequence data are not informative enough
to resolve the gene tree. This possibility strongly depends on the mutation rate.
Let µ be the mutation rate per region per generation, and consider the effect
of mutation on the estimation of the gene tree. We consider the simplest model
of mutations on DNA sequences, the infinite site model [10], in which mutation
rate per site is so small that no multiple mutations at a single site are allowed.
Consider a gene tree, (AB)C, and suppose that we have a reasonable outgroup
sequence such that we know the sequence of the MRCA of the three sequences. It
is obvious that mutations on the internal branch between the MRCA of the three
and the MRCA of A and B are informative. If at least one mutation occurred
on this branch, the gene tree can be resolved from the DNA sequence alignment.
This effect is investigated by assuming that the number of mutations on a branch
with length t follows a Poisson distribution with mean µt. Fig. 7(b) shows the
probability that the gene tree is resolved; T2−T1 = 0.5N generations is assumed
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Fig. 8. (a) A three bacterial species model with an HGT event. A demonstration that
a congruent tree could be observed even with HGT. (b) The probabilities of the three
types of gene tree, (ab)c’, (ac’)b, and a(bc’), as functions of Th/N . T1 = 2N and
T2 = 3N are assumed.

so that the probability that the gene tree is (AB)C is about 0.6. As expected,
as the mutation rate increases, the probability that the gene tree is resolved
from the sequence alignment increases, and this probability exceeds 90% when
Nµ > 1.52. Similar results are obtained for the other two types of trees, (AC)B
and A(BC), that appears with probability 0.2 for each (see also Fig. 7(b)).

Thus far, we have shown that the gene tree is not always identical to the
species tree even considering verical evolution. With keeping this in mind, let
us consider the effect of horizontal gene transfer (HGT) on gene tree under the
framework of the coalescent. The application of the coalescent theory to bacteria
is straightforward. Rather than the Wright-Fisher model, bacterial evolution may
be better described by the Moran model, which handles overlapping generations
well. Suppose that each haploid individual in a bacterial population with size
N has a lifespan that follows an exponential distribution with mean l. When an
individual dies, another individual randomly chosen from the population replaces
it to keep the population size constant. In other words, one of the N − 1 alive
lineages is duplicated to replace the dead one. Under the Moran model, the
ancestral lineages of individuals of interest can be traced backward in time,
and the coalescent time between a pair of individuals follows an exponential
distribution with mean lN/2 [6,22]. This means that one half of the mean lifetime
in the Moran model corresponds to one generation in the Wright-Fisher model.
It may usually be thought that HGT can be detected when the gene tree and
species tree are incongruent (see Section 2). However, the situation is complicated
when lineage sorting is also involved. Consider a model with three species, A,
B, and C, in which an HGT event occurs from species B to C. Suppose the
ancient circular genome has a single copy of a gene as illustrated in Fig. 8(a).
Let a, b and c be the focal orthologous genes in the three species, respectively. At
time Th, a gene escaped from species B and was inserted in a genome in species
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C at Ti, which is denoted by c′. Following the HGT event, c was physically
deleted from the genome, so that each of the three species currently has a single
copy of the focal gene. If there is no lineage sorting, the gene tree should be
a(bc′). Since this tree is incongruent with the species tree, (AB)C, we could
consider it as an evidence for HGT. However, as shown in Section 2, lineage
sorting could also produce the incongruence between the gene tree and species
tree without HGT. It is also important to note that lineage sorting, coupled with
HGT, could produce congruent gene tree, as illustrated in Fig. 8(a). Although
b and c′ have a higher chance to coalesce first, the probability that the first
coalescence occurs between a and b or between a and c′ may not be negligible
especially when T1 − Th is short. The probabilities of the three types of gene
tree can be formulated under this tri-species model with HGT as illustrated in
Fig. 8(a). Here, Th could exceed T1, in such a case it can be considered that HGT
occurred before the speciation between A and B. Assuming that all populations
have equal (constant) population sizes, N , the three probabilities can be obtained
modifying (3) and (4):

Prob[(AB)C] =
{ 1

3e−(T1−Th)/N if Th ≤ T1

1 − 2
3e−(Th−T1)/N if Th > T1

, (5)

Prob[(AC)B] =
{ 1

3e−(T1−Th)/N if Th ≤ T1
1
3e−(Th−T1)/N if Th > T1

, (6)

and

Prob[A(BC)] =
{

1 − 2
3e−(T1−Th)/N if Th ≤ T1

1
3e−(Th−T1)/N if Th > T1

. (7)

Fig. 8(b) shows the three probabilities assuming T1 = 2N and T2 = 3N .

5 Conclusions and Future Work

In this paper, we showed that error in inferred trees has a negative impact on
the estimates made by phylogeny-based HGT detection methods. These results
provide a set of conclusions. First, to obtain accurate estimates of HGT based
on tree incongruence, poorly supported edges of reconstructed trees should be
removed; this is a hard task, but is very important to conduct. Second, elimi-
nating statistical error from reconstructed trees leads to non-binary trees, and
hence phylogeny-based HGT detection methods should be designed to handle
such trees (rather than focus on binary trees, which many existing tools do).
Third, more than one maximally parsimonious solution (a solution that has the
minimum number of HGT edges, or events, to explain the species and gene tree
incongruence) may exist, and hence HGT detection methods should search for
all such solutions. In this preliminary work, we have studied the effect of error
in inferred trees on the accuracy of HGT detection methods, both in terms of
the minimum number of events computed as well as the number of such mini-
mal solutions. One of our immediate goals is to study the performance of these
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methods in terms of the locations (donors and recipients) of inferred HGT; for
this task, we will use the distance measures proposed in [16].

Further, lineage sorting due to the coalescent process works as a noise for
detecting and reconstructing HGT based on tree incongruence, sometimes mim-
icking the evidence for HGT and sometimes creating a false negative “evidence”
for HGT. Therefore, to distinguish HGT and lineage sorting, a stochastic frame-
work based on the theory introduced in Section 4 is needed. We only considered
very simple cases with three species here, and we will extend the theory to more
general cases.
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